×

Langages à un compteur. (French) Zbl 0508.68050


MSC:

68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Auterert, J.M., Non-principalité du cylindre des langages a compteur, Math. systems theory, 11, 157-167, (1977) · Zbl 0351.68026
[2] Beauquier, J., Contribution a l’étude de la complexité structurelle des langages algébriques, Thése sc. math., (1977), Paris
[3] Beauquier, J., Independence of linear and one-counter generators, (), 45-51
[4] Berstel, J., Transductions and context-free languages, (1979), Teubner Verlag Stuttgart · Zbl 0424.68040
[5] Berstel, J.; Boasson, L., Une suite décroissante de clines rationnels, (), 383-397 · Zbl 0288.68037
[6] Boasson, L., Two iteration theorems for some families of langages, J. comput. system sci., 7, 583-596, (1973) · Zbl 0298.68053
[7] Boasson, L.; Nivat, M., Sur diverses familles de langages fermées par transductions rationnelles, Acta inform., 2, 180-188, (1973) · Zbl 0242.68037
[8] Book, R.; Greibach, S.; Wrathall, C., Reset machines, J. comput. system sci., 19, 256-276, (1979) · Zbl 0427.03029
[9] Book, R.; Nivat, M., Linear languages and the intersection closures of classes of languages, SIAM J. comput., 7, 167-177, (1978) · Zbl 0376.68049
[10] Eilenberg, S., ()
[11] Ginsburg, S.; Goldstine, J.; Greibach, S., Uniformly erasable AFL, J. comput. system sci., 10, 165-182, (1975) · Zbl 0325.68042
[12] Ginsburg, S.; Goldstine, J.; Greibach, S., Some uniformly erasable families of languages, Theoret. comput. sci., 2, 29-44, (1976) · Zbl 0343.68033
[13] Greibach, S., An infinite hierarchy of context-free languages, J. assoc. comput. Mach., 16, 91-106, (1969) · Zbl 0182.02002
[14] Greibach, S., The hardest context-free language, SIAM J. comput., 2, 304-310, (1973) · Zbl 0278.68073
[15] Greibach, S., One-counter languages and the IRS condition, J. comput. system sci., 10, 237-247, (1975) · Zbl 0307.68062
[16] Greibach, S., A note on the recognition of one-counter languages, RAIRO inform. theor., R2, 5-12, (1975)
[17] Greibach, S., Remarks on blind and partially blind one-way multicounter machines, Theoret. comput. sci., 7, 311-324, (1978) · Zbl 0389.68030
[18] Greibach, S., One-counter languages and the chevron operation, RAIRO inform. theor., 13, 189-194, (1979) · Zbl 0441.68081
[19] Jantzen, M., On the hierarchy of Petri net languages, RAIRO inform. theor., 13, 19-30, (1979) · Zbl 0404.68076
[20] Jantzen, M., The power of synchronizing operations on strings, (1980), Univ. California Santa Barbara
[21] Latteux, M., Cônes rationnels commutativement clos, RAIRO inform. theor., 11, 29-51, (1977) · Zbl 0354.68103
[22] Latteux, M., Produit dans le cône rationnel engendré par D_{1}∗, Theoret. comput. sci., 5, 129-134, (1977) · Zbl 0368.68076
[23] Latteux, M., Langages commutatifs, () · Zbl 0387.68051
[24] Latteux, M., Cônes rationnels commutatifs, J. comput. system sci., 18, 307-333, (1979) · Zbl 0421.68074
[25] Latteux, M., Sur LES générateurs algébriques et linéaires, Acta inform., 13, 347-363, (1980) · Zbl 0414.68047
[26] Latteux, M., A propos du lemme de substitution, Theoret. comput. sci., (1980), à paraître · Zbl 0454.68086
[27] Latteux, M.; Leguy, J., Une propriété de :la famille GRE, (), 255-261 · Zbl 0496.68051
[28] Leguy, J., Transductions rationnelles décroissantes, RAIRO inform. theor., (1979), à paraître. · Zbl 0456.68097
[29] Leguy, J., Transduction rationnelle décroissante et substitution, ()
[30] Nivat, M., Transductions des langages de chomsky, Thése sc. math., (1967), Grenoble, France · Zbl 0313.68065
[31] Salomaa, A., On the index of a context-free grammar and language, Inform. and control, 14, 474-477, (1969) · Zbl 0181.31001
[32] Turakainen, P., On some bounded semi AFLs and afls, Inform. sci., (1980), à paraître
[33] Yntema, M.K., Inclusion relations among families of context-free languages, Inform. and control, 10, 572-597, (1967) · Zbl 0207.31405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.