zbMATH — the first resource for mathematics

Approximation of general arch problems by straight beam elements. (English) Zbl 0508.73069

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML
[1] Bernadou, M.: Sur l’analyse numérique du modèle linéraire de coques minces de W.T. Koiter. Thèse d’Etat, Paris VI, Juin 1978
[2] Bernadou, M.: Convergence of conforming finite element methods for general shell problems. Internat. J. Engrg. Sci.18, 249–276 (1980) · Zbl 0429.73084
[3] Bernadou, M., Ciarlet, P.G.: Sur l’ellipticité du modèle linéraire de coques de W.T. Koiter. Computing Methods in Applied Sciences and Engineering. Lecture Notes in Economics and Mathematical Systems, Vol.134, pp. 89–136, Springer Berlin Heidelberg New York, 1976 · Zbl 0356.73066
[4] Bernadou, M., Ducatel, Y.: Some remarks about the approximation of general shell problem by flat plate elements. (To appear) · Zbl 0624.73064
[5] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, 1978 · Zbl 0383.65058
[6] Ciarlet, P.G.: On question of existence in shell theory. J. Indian Math. Soc.40, 131–143 (1976) · Zbl 0436.73081
[7] Clough, R.W.: The finite element method after twenty five years: a personal view. Computers and Structures,12, 361–370 (1980) · Zbl 0443.73048
[8] Clough, R.W., Johnson, C.P.: A finite element approximation for the analysis of thin shells. Internat. J. Solids and Structures4, 43–60 (1968) · Zbl 0168.22507
[9] Clough, R.W., Johnson, C.P.: Finite element analysis of arbitrary thin shells. Proceedings ACI Symposium on concrete thin shells, pp. 333–363, New York, 1970
[10] Dawe, D.J.: Shell analysis using a simple facet element. J. Strain Anal.7, 266–270 (1972)
[11] Dawe, D.J.: Some high-order elements for arches and shells. In: Finite Elements for Thin Shells and Curved Members. Ashwell, D.G., Gallagher, R.H. (eds.). London: J. Wiley and Sons, pp. 131–153, 1976
[12] Gellert, M., Laursen, M.E.: Formulation and convergence of a mixed finite element method applied to elastic arches of arbitrary geometry and loading. Comput. Methods Appl. Mech. Engrg.7, 285–302 (1976) · Zbl 0339.73042
[13] Ishihara, K.: A finite element lumped mass scheme for solving eigenvalue problems of circular arches. Numer. Math.36, 267–290 (1981) · Zbl 0438.73065
[14] Johnson, C.: On finite element methods for curved shells using flat elements. In: Numerische Behandlung von Differentialgleichungen, pp. 147–154. International Series of Numerical Mathematics, Vol. 27, Basel, Stuttgart: Birkhäuser Verlag, 1975 · Zbl 0318.65049
[15] Kikuchi, F.: On the validity of an approximation available in the finite element shell analysis. Computers and Structures5, 1–8 (1975) · Zbl 0328.73056
[16] Kikuchi, F.: On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements. Comput. Methods Appl. Mech. Engrg.5, 253–276 (1975) · Zbl 0301.73023
[17] Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch.B69, 1–54 (1966)
[18] Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch.B73, 169–195 (1970) · Zbl 0213.27002
[19] Moan, T.: A note on the convergence of finite element approximation for problems formulated in curvilinear coordinate systems. Comput. Methods Appl. Mech. Engrg.3, 209–235 (1974) · Zbl 0278.73045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.