Masat, F. E. Idempotents and inverses in conventional semigroups. (English) Zbl 0509.20048 Czech. Math. J. 32(107), 384-388 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 20M10 General structure theory for semigroups Keywords:idempotents; orthodox semigroups; conventional semigroups; regular semigroups; inverses PDF BibTeX XML Cite \textit{F. E. Masat}, Czech. Math. J. 32(107), 384--388 (1982; Zbl 0509.20048) Full Text: EuDML OpenURL References: [1] A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups I. A.M.S., Providence, 1961. · Zbl 0111.03403 [2] C. Eberhart W. Williams, L. Kinch: Idempotent-generated regular semigroups. J. Austral. Math. Soc., Vol. 15 (1973), 27-34. · Zbl 0269.20048 [3] D. G. Fitz-Gerald: On inverse of products of idempotents in regular semigroups. J. Austral. Math. Soc., Vol. 13 (1972), 335-337. · Zbl 0244.20079 [4] F. E. Masat: Right group and group congruences on a regular semigroup. Duke Math. J., Vol. 40 (1973), 393-402. · Zbl 0267.20057 [5] F. E. Masat: Congruences on conventional semigroups. Czechoslovak Math. J., Vol. 31 (106), (1981), 199-205. · Zbl 0468.20050 [6] J. C. Meakin: Congruences on orthodox semigroups. J. Austral. Math. Soc., Vol. 12 (1971), 323-341. · Zbl 0234.20037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.