×

zbMATH — the first resource for mathematics

Ambient deformations for exceptional sets in two-manifolds. (English) Zbl 0509.32010

MSC:
32G10 Deformations of submanifolds and subspaces
32S30 Deformations of complex singularities; vanishing cycles
14B07 Deformations of singularities
32T99 Pseudoconvex domains
32Sxx Complex singularities
32S05 Local complex singularities
14B05 Singularities in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arnold, V.: Local normal forms of functions. Inv. Math.35, 87–109 (1976) · Zbl 0336.57022 · doi:10.1007/BF01390134
[2] Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math.88, 129–136 (1966) · Zbl 0142.18602 · doi:10.2307/2373050
[3] Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Alg.29, 330–348 (1974) · Zbl 0292.14013 · doi:10.1016/0021-8693(74)90102-1
[4] Artin, M., Schlessinger, M.: Algebraic construction of Brieskorn’s resolutions. Preprint 1973
[5] Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Inv. Math.4, 336–358 (1967/68) · Zbl 0219.14003 · doi:10.1007/BF01425318
[6] Brieskorn, E.: Die Mondromie der isolierten Singularitäten von Hyperflächen. Manu. Math.2, 103–161 (1970) · Zbl 0186.26101 · doi:10.1007/BF01155695
[7] Brieskorn, E.: Singular elements of semi-simple algebraic groups. Proc. Inter. Congr. Math., Nice 1970, vol. 2, pp. 279–284. Paris: Gauthier-Villars 1971
[8] Elkik, R.: Algébrisation du module formel d’une singularité isolée. Astérisque16, 133–144 (1974) · Zbl 0294.14008
[9] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Etudes Sci. no5, 1960 · Zbl 0158.32901
[10] Grauert, H.: Über die Deformation isolierter Singularitäten analytischen Mengen. Inv. Math.15, 171–199 (1972) · Zbl 0237.32011 · doi:10.1007/BF01404124
[11] Grauert, H.: Der Satz von Kuranishi für kompakte komplexe Räume. Inv. Math.25, 107–142 (1974) · Zbl 0286.32015 · doi:10.1007/BF01390171
[12] Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. Englewood Cliffs, N.J.: Prentice Hall, Inc., 1965 · Zbl 0141.08601
[13] Hirzebruch, F., Neumann, W., Koh, S.: Differentiable Manifolds and Quadratic Forms: Lecture Notes in Pure and Applied Mathematics, Vol. 4, New York: Marcel Dekker 1971 · Zbl 0226.57001
[14] Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9, New York: Springer-Verlag 1972 · Zbl 0254.17004
[15] Karras, U.: On pencils of curves and suface singularities. Preprint 1977 · Zbl 0352.14007
[16] Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann196, 23–29 (1972) · Zbl 0242.32014 · doi:10.1007/BF01419428
[17] Knorr, K.: Über der Grauertischen Koherenzsatz bei eigentlichen holomorphen Abbildungen, I, II, Annali d. Scuola Norm. di Pisa22, 729–768 (1968),23, 1–74 (1969) · Zbl 0177.34401
[18] Kodaira, K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math.75, 146–162 (1962) · Zbl 0112.38404 · doi:10.2307/1970424
[19] Kodaira, K.: On stability of compact submanifolds of complex manifolds. Amer. J. Math.85, 79–94 (1963) · Zbl 0173.33101 · doi:10.2307/2373187
[20] Kulikov, V.: Degenerate elliptic curves and resolution of uni- and bimodal singularities. Func. Anal. App.9, 69–70 (1975) · Zbl 0317.14013 · doi:10.1007/BF01078187
[21] Laufer, H.: Normal Two-Dimensional Singularities. Ann. Math. Studies No. 71, Princeton University Press, 1971 · Zbl 0245.32005
[22] Laufer, H.: On rational singularities. Amer. J. Math.94, 597–608 (1972) · Zbl 0251.32002 · doi:10.2307/2374639
[23] Laufer, H.: Deformations of resolutions of two-dimensional singularities. Rice University Studies59, 53–96 (1973) · Zbl 0281.32009
[24] Laufer, H.: Taut two-dimensional singularities. Math. Ann.205, 131–164 (1973) · Zbl 0281.32010 · doi:10.1007/BF01350842
[25] Laufer, H.: On minimally elliptic singularities. Amer. J. Math.99, 1257–1295 (1977) · Zbl 0384.32003 · doi:10.2307/2374025
[26] Laufer, H.: The behavior of the exceptional set under ambient deformations. Abstract 745-B5 Notices A.M.S.24, A-324 (1977)
[27] Laufer, H.: Deformations of two-dimensional pseudoconvex manifolds. Proc. International Conf. on Sev. Comp. Var., pp. 217–221. Cortona, Italy, 1976–77, Scuola Normale Superiore, Pisa 1978 · Zbl 0443.32013
[28] Laufer, H.: Ambient deformations for one-dimensional exdeptional sets. Preprint 1978
[29] Laufer, H.: Versal deformations for two-dimensional pseudoconvex manifolds. Annali d. Scuola Nurm. Sup. di Pisa. In press (1979)
[30] Laufer, H.: Lifting cycles to deformations of two-dimensional pseudoconvex manifolds. In press (1979) · Zbl 0512.32017
[31] Lê, D.: Singularities des hypersurfaces complexes. Ecole Polytechnique, Preprint (1969)
[32] Lê, D., Ramanujan, C.: The invariance of Milnor’s number implies the invariance of the topological type. Amer. J. Math.98, 67–78 (1976) · Zbl 0351.32009 · doi:10.2307/2373614
[33] Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Studies, no. 61, Princeton Univ. Press 1968 · Zbl 0184.48405
[34] Palamodov V.: The multiplicities of a holomorphic transformation. Funkional. Anal. i Priložen,1, 54–65 (1967)
[35] Pinkham, H.: Resolution simultanée de points doubles rationnels, Seminaire sur les singularités des surfaces. Ecole Polytechnique, 1977
[36] Pourcin, G.: Déformation de singularités isolées. Quelques problèmes de modules (Sem. de Géometrie Analytique, ENS, Paris, 1971–2) Asterisque16, 161–173 (1974)
[37] Riemenschneider, O.: Über die Anwendung algebraischer Methoden in der Deformationstheorie komplexer Räume. Math. Ann.187, 40–55 (1970) · Zbl 0196.09701 · doi:10.1007/BF01368159
[38] Riemenschneider, O.: Halbstetigkeitssätze für 1-konvexe holomorphe Abbildungen. Math. Ann.192, 216–226 (1971) · Zbl 0209.38802 · doi:10.1007/BF02052873
[39] Riemenschneider, O.: Bemerkungen zur Deformationstheorie nicht-rationaler Singularitäten. Manu. Math.14, 91–100 (1974) · Zbl 0299.32013 · doi:10.1007/BF01637625
[40] Riemenschneider, O.: Dihedral singularities; Invariants, equations and infinitesimal deformations, Bull. A.M.S.82, 745–747 (1976) · Zbl 0332.32006 · doi:10.1090/S0002-9904-1976-14145-6
[41] Riemenschneider, O.: Familien komplexer Räume mit streng pseudokonvexer spezieller Faser. Comm. Math. Helv.51, 547–565 (1976) · Zbl 0338.32013 · doi:10.1007/BF02568173
[42] Saito, K.: Einfach elliptische Singularitäten. Inv. Math.23, 289–325 (1974) · Zbl 0296.14019 · doi:10.1007/BF01389749
[43] Serre, J.-P.: Groupes algébriques et corps de classes. Actualities Scientifiques et Industrielles 1264 Paris: Hermann 1959
[44] Serre, J.-P.: Algèbres de Lie semi-simples complexes. New York: W.A. Benjamin 1966 · Zbl 0144.02105
[45] Siersma, D.: Classification and deformation of singularities. Doctoral Dissertation, University of Amsterdam 1974 · Zbl 0283.57012
[46] Siu, Y.-T.: Analytic sheaf cohomology groups of dimensionn ofn-dimensional complex spaces. Trans. A.M.S.143, 77–94 (1969) · Zbl 0186.40404
[47] Timourian, J.: The invariance of Milnor’s number implies topological triviality. Amer. J. Math.99, 437–446 (1977) · Zbl 0373.32003 · doi:10.2307/2373829
[48] Tjurina, G.N.: Absolute isolation of rational singularities and triple rational points (Russian). Funkcional. Anal. i Priložen2, 70–81 (1968)
[49] Tjurina, G.N.: The rigidity of rationally contractible curves on a surface (Russian). Izv. Akad. Nauk SSR Ser. Mat.32, 943–970 (1968)
[50] Tjurina, G.N.: Locally semi-universal flat deformations of isolated singularities of complex spaces (Russian). Izv. Akad. Nauk SSR Ser. mat.33, 1026–1058 (1969)
[51] Wahl, J.: Equisingular deformations of normal surface singularities, I. Ann. Math.104, 325–356 (1976) · Zbl 0358.14007 · doi:10.2307/1971049
[52] Wahl, J.: The discriminant locus of a rational singularity. Informal research announcement 1976
[53] Wahl, J.: Simultaneous resolution of rational singularities. Duke J. Math.46, 341–374 (1979) · Zbl 0472.14002 · doi:10.1215/S0012-7094-79-04615-5
[54] Wassermann, G.: Stabilities of Unfoldings, Lecture Notes in Mathematics No. 393. Berlin: Springer-Verlag 1974 · Zbl 0288.57017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.