×

zbMATH — the first resource for mathematics

Reductive group actions on Stein spaces. (English) Zbl 0509.32021

MSC:
32M05 Complex Lie groups, group actions on complex spaces
32M10 Homogeneous complex manifolds
32E10 Stein spaces, Stein manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Barth, W., Otte, M.: Invariante holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann.201, 97-112 (1973) · Zbl 0253.32018 · doi:10.1007/BF01359787
[2] Birkes, D.: Orbits of linear algebraic groups. Ann. Math.93, 459-475 (1971) · Zbl 0212.36402 · doi:10.2307/1970884
[3] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[4] Borel, A.: Representations de groupes localement compacts. In: Lecture Notes in Mathematics. Vol. 276. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0242.22007
[5] Cartan, H.: Les fonctions de deux variables complexes et le problème de la représentation analytique. J. Math. Pures Appl.10, 1-114 (1931) · JFM 57.0387.01
[6] Cartan, H.: Quotients of complex analytic spaces. International Colloquium on Function Theory, Tata Institute of Fundamental Research, Bombay, 1960 · Zbl 0154.33603
[7] Fischer, G.: Complex analytic geometry. In: Lecture Notes in Mathematics, Vol. 538. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0343.32002
[8] Grauert, H.: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z.81, 377-391 (1963) · Zbl 0151.09702 · doi:10.1007/BF01111528
[9] Grauert, H., Remmert, R.: Theory of Stein space. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0433.32007
[10] Harish-Chandra: Discrete series for semi-simple Lie groups. II. Acta Math.116, 1-111 (1966) · Zbl 0199.20102 · doi:10.1007/BF02392813
[11] Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann.36, 473-534 (1890) · JFM 22.0133.01 · doi:10.1007/BF01208503
[12] Hilbert, D.: Über die vollen Invariantensysteme. Math. Ann42, 313-373 (1893) · JFM 25.0173.01 · doi:10.1007/BF01444162
[13] Hochschild, G., Mostow, G.D.: Representations and representative functions of Lie groups. III. Ann. Math.70, 85-100 (1959) · Zbl 0111.03201 · doi:10.2307/1969893
[14] Hochschild, G., Mostow, G.D.: Affine embeddings of complex analytic homogeneous spaces. Am. J. of Math.87, 807-839 (1965) · Zbl 0161.17702 · doi:10.2307/2373247
[15] Holmann, H.: Komplexe Räume mit komplexen Transformationsgruppen. Math. Ann.150, 327-360 (1963) · Zbl 0156.30603 · doi:10.1007/BF01470762
[16] Kostant, B.: Lie group representations on polynomial rings. Am. J. Math.85, 327-404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[17] Luna, D.: Adhérences d’orbit et invariants. Invent. Math.29, 231-238 (1975) · Zbl 0315.14018 · doi:10.1007/BF01389851
[18] Luna, D.: Slices etales. Bull. Soc. math. France Mém.33, 81-105 (1973)
[19] Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J.16, 205-218 (1960) · Zbl 0094.28201
[20] Medernach, C.: Zur Abbildungstheorie Steinscher Räume. Doctoral Dissertation. University of Fribourg, Switzerland, 1980
[21] Mumford, D.: Geometric invariant theory. In: Ergebnisse der Mathematik, Bd. 34. Berlin, Heidelberg, New York, Springer 1965 · Zbl 0147.39304
[22] Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ.3, 369-377 (1964) · Zbl 0146.04501
[23] Richardson, R.: Principal orbit types for reductive groups acting on Stein manifolds. Math. Ann.208, 323-331 (1974) · Zbl 0276.32021 · doi:10.1007/BF01432156
[24] Weyl, H.: Classical groups. Princeton. Princeton University Press1946 · JFM 65.0058.02
[25] Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math.3, 43-70 (1967) · Zbl 0157.13401 · doi:10.1007/BF01425490
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.