Klainerman, S.; Ponce, Gustavo Global, small amplitude solutions to nonlinear evolution equations. (English) Zbl 0509.35009 Commun. Pure Appl. Math. 36, 133-141 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 126 Documents MSC: 35B40 Asymptotic behavior of solutions to PDEs 35B45 A priori estimates in context of PDEs 35Q99 Partial differential equations of mathematical physics and other areas of application 35L70 Second-order nonlinear hyperbolic equations 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:long-time behaviour; nonlinear evolution equations Citations:Zbl 0405.35056; Zbl 0502.35015 PDF BibTeX XML Cite \textit{S. Klainerman} and \textit{G. Ponce}, Commun. Pure Appl. Math. 36, 133--141 (1983; Zbl 0509.35009) Full Text: DOI OpenURL References: [1] Klainerman, Comm. Pure Appl. Math. 33 pp 43– (1980) [2] Long time behavior of the solution to nonlinear equations, preprint. [3] Strauss, J. Funct. Anal. 41 pp 110– (1981) [4] Marshall, J. Math. Pure Appl. 59 pp 417– (1980) [5] Matsumura, Proc. Japan Acad. 55 (1979) [6] Shatah, Amer. Math. Soc. 2 (1981) [7] Pecher, I, Math. Z. 150 pp 159– (1976) [8] Strichatz, Trans. Amer. Math. Soc. 148 pp 461– (1970) [9] von Wahl, Math. Z. 120 pp 93– (1971) [10] Global existence of small solutions to nonlinear evolution equations, preprint. [11] Long Time Stability of Solutions of Nonlinear Evólution Equations, Ph.D. Thesis, New York Univ., 1982. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.