×

Partial regularity of suitable weak solutions of the Navier-Stokes equations. (English) Zbl 0509.35067


MSC:

35Q30 Navier-Stokes equations
35D10 Regularity of generalized solutions of PDE (MSC2000)
35A20 Analyticity in context of PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Almgren, Ann. Math. 87 pp 321– (1968)
[2] , and , First-order interpolation inequalities with weights, in preparation.
[3] Fabes, Amer. J. Math. 99 pp 601– (1977)
[4] Fabes, Amer. J. Math. 99 pp 626– (1977)
[5] Geometric Measure Theory, Springer-Verlag, New York, 1969.
[6] Foias, J. Math. Pures et Appl. 58 pp 339– (1979)
[7] Fujita, Arch. Ration. Mech. Anal. 16 pp 269– (1964)
[8] Fujiwara, Tokyo Univ. Fac. Sciences J. 24 pp 685– (1977)
[9] Gagliardo, Richerche di Mat. Napoli 8 pp 24– (1959)
[10] and , Solutions in Lr to the Navier-Stokes initial value problem, preprint.
[11] Golovkin, Trudy Mat. Inst. Steklov 59 pp 100– (1960)
[12] Hopf, Math. Nachr. 4 pp 213– (1951) · Zbl 0042.10604
[13] The Mathematical Theory of Viscous Incompressible Flows, 2nd ed., Gordon and Breach, New York, 1969.
[14] Unique Solvability in the Large of Three-Dimensional Cauchy Problems for the Navier-Stokes Equations in the Presence of Axial Symmetry, in Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, II, Steklov Inst. Seminars in Mathematics, Leningrad, Vol. 7, translated by Consultants Bureau, New York, 1970.
[15] Leray, Acta Math. 63 pp 193– (1934)
[16] Interpolation inequalities with weighted norms, in preparation.
[17] Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires, Dunod-Gauthier-Villars, Paris, 1969.
[18] Lions, Rend. Sem. Mat. Padova 30 pp 16– (1960)
[19] Muckenhaupt, Trans. Amer. Math. Soc. 161 pp 249– (1971)
[20] Morrey, J. Math. Mech. 17 pp 649– (1968)
[21] Nirenberg, Ann. di Pisa 13 pp 116– (1959)
[22] Ohyama, Proc. Japan Acad. 36 pp 273– (1960)
[23] Rivière, Arkiv för Mathematik 9 pp 243– (1971)
[24] Turbulence and Hausdorff dimension, in Turbulence and the Navier-Stokes Equations, Lecture Notes in Math., No. 565, Springer-Verlag, 1976, pp. 94–112.
[25] Scheffer, Pacific J. Math. 66 pp 535– (1976) · Zbl 0325.35064
[26] Scheffer, Comm. Math. Phys. 55 pp 97– (1977)
[27] Scheffer, Comm. Math. Phys. 61 pp 41– (1978)
[28] Scheffer, Comm. Math. Phys. 73 pp 1– (1980)
[29] The initial value problem for the Navier-Stokes equations, in Nonlinear Problems, Ed., Univ. of Wisconsin Press, 1963, pp. 69–98.
[30] Serrin, Arch Ration. Mech. Anal. 9 pp 187– (1962)
[31] Solonnikov, Trudy Mat. Inst. Steklov 70 (1964)
[32] Amer. Math. Soc. Translations, Series 2 75 pp 1–
[33] Solonnikov, Trudy Mat. Inst. Steklov 70 (1964)
[34] Amer. Math. Soc. Trans., Series 2 65 pp 51– (1967) · Zbl 0179.42901
[35] Singular Integrals and the Differentiability Properties of Functions, Princeton University Press, 1970.
[36] Stein, Proc. Amer. Math. Soc. 8 pp 250– (1957)
[37] Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam and New York, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.