×

zbMATH — the first resource for mathematics

Exchanging the order of taking suprema and countable intersections of sigma-algebras. (English) Zbl 0509.60002

MSC:
60A10 Probabilistic measure theory
60G07 General theory of stochastic processes
60G60 Random fields
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] S. Albeverio and R. Høegh-Krohn , The global Markov property for euclidean and lattice fields. Physics letters , t. 84 B , 1979 , p. 89 - 90 . MR 533849 · Zbl 0443.60099
[2] H. Föllmer , On the global Markov property , L. Streit (ed.): Quantum fields-algebras, -processes Springer: Wien , 1980 . MR 601817 | Zbl 0457.60077 · Zbl 0457.60077
[3] S. Goldstein , Remarks on the Global Markov Property. Comm. math. Phys. , t. 74 , 1980 , p. 223 - 234 . Article | MR 578041 | Zbl 0429.60097 · Zbl 0429.60097
[4] K. Ito and M. Nisio , On stationary solutions of a stochastic differential equation. J. Math., Kyoto Univ. , t. 4 , 1964 , p. 1 - 75 . Article | MR 177456 | Zbl 0131.16402 · Zbl 0131.16402
[5] G. Kallianpur and V. Mandrekhar , The Markov property for generalized Gaussian random fields . Ann. Inst. Fourier ( Grenoble ), t. 24 , 1974 , p. 143 - 167 . Numdam | MR 405569 | Zbl 0275.60054 · Zbl 0275.60054
[6] R. Kotecky and D. Preiss , Markoff property of generalized random fields. 7th Winter School on Abstract Analysis . Math. Inst. of the Cz . Acad. of Sciences , Praha , 1979 .
[7] H. Künsch , Gaussian Markov random fields . J. of the Fac. of Sciences . Univ. of Tokyo , Sec. IA, t. 26 , 1979 , p. 53 - 73 . MR 539773 | Zbl 0408.60038 · Zbl 0408.60038
[8] D. Maharam , An example on tail fields . In: Measure Theory, Applications to Stochastic Analysis (G. Kallianpur and D. Kölzow, eds.). Lecture Notes in Math. , 695 , Springer , Berlin , etc., 1978 , p. 215 . MR 527090 | Zbl 0401.60002 · Zbl 0401.60002
[9] P.A. Meyer et M. Yor , Sur la théorie de la prédiction, et le problème de décomposition des tribus F0t+ . Sém. de Probabilités X . Lecture Notes in Math. , 511 , Springer , Berlin , etc., 1976 . Numdam | Zbl 0332.60025 · Zbl 0332.60025
[10] E. Nelson , Probability theory and Euclidean field theory in G. Velo , A. Wightman (eds.). Lecture Notes in Physics , 25 , Springer , Berlin , etc., 1973 . MR 395513 | Zbl 0367.60108 · Zbl 0367.60108
[11] D. Ornstein and B. Weiss , Every transformation is bilaterally deterministic . Isr. J. of Math. , t. 21 , 1975 , p. 154 - 158 . MR 382600 | Zbl 0325.28016 · Zbl 0325.28016
[12] M. Rosenblatt , Stationary processes as shifts of functions of independent random variables. J. Math. Mech. , t. 8 , 1959 , p. 665 - 681 . MR 114249 | Zbl 0092.33601 · Zbl 0092.33601
[13] B.S. Tsirel’son , An example of a stochastic differential equation having no strong solution . Theory of probability and its applications , t. 20 , 1975 , p. 416 - 418 . Zbl 0353.60061 · Zbl 0353.60061
[14] v. H. Weizsäcker , A simple example concerning the global Markov Property of lattice random fields . 8th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad of Sciences , Praha , 1980 .
[15] G. Winkler , The number of phases of inhomogeneous Markov fields with finite state space on N and Z and their behaviour at infinity . To appear in Math. Nachr. MR 657885 | Zbl 0488.60100 · Zbl 0488.60100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.