Schneider, Peter Iwasawa L-functions of varieties over algebraic number fields. A first approach. (English) Zbl 0511.14010 Invent. Math. 71, 251-293 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 22 Documents MSC: 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 11R42 Zeta functions and \(L\)-functions of number fields 14K05 Algebraic theory of abelian varieties 14G25 Global ground fields in algebraic geometry Keywords:Iwasawa L-functions; Abelian variety; tori; characteristic functions of Iwasawa module; values of L-functions at integer points PDF BibTeX XML Cite \textit{P. Schneider}, Invent. Math. 71, 251--293 (1983; Zbl 0511.14010) Full Text: DOI EuDML OpenURL References: [1] Artin, E., Tate, J.: Class Field Theory. New York: Benjamin 1968 · Zbl 0176.33504 [2] Bayer, P., Neukirch, J.: On values of zeta functions and l-adic Euler characteristics. Invent. math.50, 35-64 (1978) · Zbl 0409.12018 [3] Coates, J.: OnK 2 and some classical conjectures in algebraic number theory. Ann. Math.95, 99-116 (1972) · Zbl 0245.12005 [4] Coates, J.:p-adicL-functions and Iwasawa’s theory. Proc. Symp. Durham 1975, pp. 269-353, London-New York-San Francisco: Academic Press 1977 [5] Coates, J.: Hermann-Weyl-Lectures, IAS, Princeton 1979 [6] Coates, J., Lichtenbaum, S.: On l-adic zeta functions. Ann. Math.98, 498-550 (1973) · Zbl 0279.12005 [7] Deligne, P.: Valeurs de fonctionsL et périodes d’intégrales. Proc. Symp. Pure Math.33 p. 313-346. American Math. Soc. 1979 [8] Federer, L.J., Gross, B.: Regulators and Iwasawa modules. Invent. math.62, 443-457 (1981) · Zbl 0468.12005 [9] Greenberg, R.: On a certain l-adic representation. Invent. math.21, 117-124 (1973) · Zbl 0268.12004 [10] Gross, B.: Letter to S. Bloch, 1980 [11] Grothendieck, A.: Le groupe de Brauer III. Dix exposés sur la cohomologie des schémas, pp. 46-188. Amsterdam: North-Holland 1968 [12] Imai, H.: A remark on the rational points of abelian varieties with values in cyclotomic ? p . Proc. Japan Acad.51, 12-16 (1975) · Zbl 0323.14010 [13] Iwasawa, K.: On ?1 of algebraic number fields. Ann. Math.98, 246-326 (1973) · Zbl 0285.12008 [14] Lichtenbaum, S.: Values of zeta andL-functions at zero. Astérisque24-25, 133-138 (1975) · Zbl 0312.12016 [15] Lubin, J., Rosen, M.: The norm map for ordinary abelian varieties. J. Algebra52, 236-240 (1978) · Zbl 0417.14035 [16] Mazur, B.: Local flat duality. Amer. J. Math.92, 343-361 (1970) · Zbl 0199.24501 [17] Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. math.18, 183-266 (1972) · Zbl 0245.14015 [18] Mazur, B.: Notes on étale cohomology of number fields. Ann. sci. Ec. Norm. Sup.6, 521-556 (1973) · Zbl 0282.14004 [19] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. IHES47, 33-186 (1977) · Zbl 0394.14008 [20] Mazur, B., Roberts L.: Local Euler characteristics Invent. math.9, 201-234 (1970) · Zbl 0191.19202 [21] Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. math.25, 1-61 (1974) · Zbl 0281.14016 [22] Milne, J.S.: Etale cohomology. Princeton: Princeton Univ. Press 1980 · Zbl 0433.14012 [23] Mumford, D.: Abelian varieties. Oxford Univ. Press 1974 · Zbl 0326.14012 [24] Neukirch, J.: Klassenkörpertheorie. Mannheim: Bibliographisches Institut 1969 · Zbl 0199.37502 [25] Ono, T.: Arithmetic of algebraic tori. Ann. Math.74, 101-139 (1961) · Zbl 0119.27801 [26] Perrin-Riou, B.: Groupe de Selmer d’une courbe elliptique à multiplication complexe. Compositio Math.43, 387-417 (1981) · Zbl 0479.14019 [27] Raynaud, M.: Modêles de Néron. C.R. Acad. Sci. Paris262, 345-347 (1966) · Zbl 0141.18203 [28] Rubin, K.: On the arithmetic of CM elliptic curves in ?p-extensions. Harvard Thesis 1980 [29] Schneider, P.: Über gewisse Galoiscohomologiegruppen. Math. Z.168, 181-205 (1979) · Zbl 0421.12024 [30] Schneider, P.: Die Galoiscohomologiep-adischer Darstellungen über Zahlkörpern. Regensburg: Dissertation 1980 [31] Serre, J-P.: Cohomologie Galoisienne. Lecture Notes in Math., vol. 5. Berlin-Heidelberg-New York: Springer 1964 · Zbl 0143.05901 [32] Serre, J-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Sém. Delange-Pisot-Poitou19, 1969/70 [33] Shyr, J.-M.: A generalization of Dirichlet’s unit theorem. J. Number Theory9, 213-217 (1977) · Zbl 0365.12002 [34] Soulé, C.:K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. math.55, 251-295 (1979) · Zbl 0437.12008 [35] Tamme, G.: Einführung in die étale Kohomologie. Der Regensburger Trichter Bd. 17. Regensburg 1979 · Zbl 0473.14010 [36] Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Int. Congress Math. Stockholm 1962, pp. 288-295 [37] Tate, J.: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki 1965/66, exp.306 [38] Perrin-Riou, B.: Descente infinie et hauteurp-adique sur les courbes elliptiques à multiplication complexe. Invent. math. 70, 369-398 (1982) · Zbl 0547.14025 [39] Schneider, P.:p-Adic Height Pairings I. Invent. math.69, 401-409 (1982) EGA (Eléments de Géométrie Algébrique) I: Berlin-Heidelberg-New York Springer 1971, IV: Publ. Math. IHES20 (1964),24 (1965),28 (1966),32 (1967) SGA (Séminaire de Géométrie Algébrique) 3I: Lecture Notes in Math. 151. Berlin-Heidelberg-New York: Springer 1970, 4: Ibidem269, 270, 305 (1972-73). 197I: Ibidem288 (1972) · Zbl 0509.14048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.