×

zbMATH — the first resource for mathematics

On collective complete integrability according to the method of Thimm. (English) Zbl 0511.58024

MSC:
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01398933 · Zbl 0503.58017
[2] DOI: 10.1016/0003-4916(80)90155-4 · Zbl 0453.58015
[3] Duflo, CRAS Paris 268 pp A583– (1969)
[4] Tkhi, Math. Sb. 106 pp 154– (1978)
[5] Thimm, Ergod. Th. & Dynam. Sys. 1 pp 495– (1981)
[6] DOI: 10.1016/0034-4877(74)90021-4 · Zbl 0327.58005
[7] Mishchenko, Itvestia 12 pp none– (1978)
[8] Mishchenko, Matem. Zametki 31 pp 257– (1982)
[9] Kramer, Compositio Mathematica 38 pp 129– (1979)
[10] Mikitiuk, Dauk Akad. Nauk SSSR 265 pp 1074– (1982)
[11] DOI: 10.1002/cpa.3160310405 · Zbl 0368.58008
[12] DOI: 10.2307/1998615 · Zbl 0317.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.