×

Steady state self-diffusion at low density. (English) Zbl 0511.60098


MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B05 Classical equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. L. Lebowitz and H. Spohn,J. Stat. Phys. 28:539 (1982). · Zbl 0512.60075
[2] H. van Beijeren, O. E. Lanford, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 22:237 (1979).
[3] J. L. Lebowitz and H. Spohn,J. Stat. Phys. 19:633 (1978).
[4] H. Spohn,Rev. Mod. Phys. 53:569 (1980).
[5] O. E. Lanford, Time evolution of large classical systems, inDynamical Systems, Theory and Applications, J. Moser, ed. (Lecture Notes in Physics No. 38, Springer, Berlin 1975). · Zbl 0329.70011
[6] O. E. Lanford,Soc. Math. France Asterisque 40:117 (1976).
[7] F. King, Ph.D. thesis, Department of Mathematics, University of California at Berkeley, 1975.
[8] R. K. Alexander, Ph.D. thesis, Department of Mathematics, University of California at Berkeley, 1975.
[9] D. Ruelle,Statistical Mechanics, Rigorous Results (W. A. Benjamin, New York 1969).
[10] M. Aizenman and H. Spohn,J. Stat. Phys. 21:23 (1979).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.