A comparison of the accuracy of the finite-difference solution to boundary-value problems for the Helmholtz equation obtained by direct and iterative methods. (English) Zbl 0511.65074


65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F05 Direct numerical methods for linear systems and matrix inversion
65F10 Iterative numerical methods for linear systems
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
86A25 Geo-electricity and geomagnetism
Full Text: EuDML


[1] I. Babuška R. B. Kellog: Numerical solution of the neutron diffusion equation in the presence of corners and interfaces. Numerical Reactor Calculations. International Atomic Energy Agency, Vienna 1972, 473 - 486.
[2] V. Bezvoda K. Segeth: Mathematical modeling of electromagnetic fields. The Use of Finite Element Method and Finite Difference Method in Geophysics. (Proceedings of Summer School, Liblice 1977.) Geofyzikální ústav ČSAV, Praha 1978, 329-332.
[3] B. A. Carre: The determination of the optimum accelerating factor for successive overrelaxation. Comput. J. 4 (1961), 73 - 78. · Zbl 0098.31405 · doi:10.1093/comjnl/4.1.73
[4] V. Červ: Numerical modelling of geoelectric structures using the Galerkin and finite element methods. Studia geoph. et geod. 22 (1978), 283 - 294.
[5] V. Červ O. Praus: Numerical modelling in laterally inhomogeneous geoelectrical structures. Studia geoph. et geod. 22 (1978), 74-81.
[6] J. H. Coggon: Electromagnetic and electrical modelling of induction effects in laterally non-uniform conductors. Phys. Earth Planet. Inter. 10 (1975), 265.
[7] P. Concus G. H. Golub: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10 (1973), 1103 - 1120. · Zbl 0245.65043 · doi:10.1137/0710092
[8] F. W. Dorr: The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev. 12 (1970), 248-263. · Zbl 0208.42403 · doi:10.1137/1012045
[9] F. W. Jones L. J. Pascoe: A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophys. J. Roy. Astronom. Soc. 23 (1971), 3.
[10] F. W. Jones A. T. Price: The perturbation of alternating geomagnetic fields by conductivity anomalies. Geophys. J. Roy. Astronom. Soc. 20 (1970), 317. · doi:10.1111/j.1365-246X.1970.tb06073.x
[11] I. Marek: On the SOR method for solving linear equations in Banach spaces. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 11 (1969), 335-341. · Zbl 0221.65096
[12] A. Ralston: A first course in numerical analysis. McGraw-Hill, New York 1965. · Zbl 0139.31603
[13] G. Strong G. J. Fix: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, N. J., 1973.
[14] R. S. Varga: Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, N. J., 1962. · Zbl 0133.08602
[15] J. T. Weaver: The electromagnetic field within a discontinuous conductor with reference to geomagnetic micropulsations near a coastline. Canad. J. Phys. 41 (1963), 484-495. · Zbl 0113.43702 · doi:10.1139/p63-051
[16] D. M. Young: Iterative solution of large linear systems. Academic Press, New York 1971. · Zbl 0231.65034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.