×

The DuFort-Frankel Chebyshev method for parabolic initial boundary value problems. (English) Zbl 0511.76003


MSC:

76M99 Basic methods in fluid mechanics
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 629-651 (1977) · Zbl 0367.65051
[2] Gantmacher, F. R., The Theory of Matrices (1974), Chap. XV, Sec. 6-14. Chelsea, New York
[3] Gottlieb, D.; Gustafsson, B., Generalized DuFort-Frankel methods for parabolic initial-boundary value problems, SIAM J. Numer. Anal., 13, 129-144 (1976) · Zbl 0344.35048
[4] Gottlieb, D.; Lustman, L.; Orszag, S. A., Spectral calculations of one-dimensional inviscid compressible flow, SIAM J. Sci. Statis. Comput., 2, 3, 296-310 (1981) · Zbl 0561.76076
[5] Gottlieb, D., On the stability of pseudospectral Chebyshev methods, Math. Comput., 36, 153, 107-118 (1981) · Zbl 0469.65076
[6] Gottlieb, D.; Turkel, E., On time discretizations for spectral methods, Stud. Appl. Math., 63, 67-86 (1980) · Zbl 0453.65059
[7] Orszag, S. A., Spectral methods for problems in complex geometry, J. Computational Phys., 37, 70-92 (1980) · Zbl 0476.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.