Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. (English) Zbl 1387.35588

Summary: We study a predator-prey model with Holling type II functional response incorporating a prey refuge under homogeneous Neumann boundary condition. We show the existence and non-existence of non-constant positive steady-state solutions depending on the constant \(m\in (0,1]\), which provides a condition for protecting \((1 - m)u\) of prey \(u\) from predation. Moreover, we investigate the asymptotic behavior of spacially inhomogeneous solutions and the local existence of periodic solutions.


35Q92 PDEs in connection with biology, chemistry and other natural sciences
35J56 Boundary value problems for first-order elliptic systems
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J60 Nonlinear elliptic equations
92D25 Population dynamics (general)
Full Text: DOI


[1] Blat, J.; Brown, K. J., Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17, 6, 1339-1353 (1986) · Zbl 0613.35008
[2] Casal, A.; Eilbeck, J. C.; López-Gómez, J., Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential Integral Equations, 7, 2, 411-439 (1994) · Zbl 0823.35050
[3] Crandall, M. G.; Rabinowitz, P. H., The Hopf bifurcation theorem in infinite dimensions, Arch. Ration. Mech. Anal., 67, 1, 53-72 (1977) · Zbl 0385.34020
[4] Du, Y.; Lou, Y., Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc., 349, 6, 2443-2475 (1997) · Zbl 0965.35041
[5] Du, Y.; Lou, Y., S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144, 2, 390-440 (1998) · Zbl 0970.35030
[6] Du, Y.; Lou, Y., Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131, 2, 321-349 (2001) · Zbl 0980.35028
[7] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0691.35001
[8] Hassel, M., The Dynamics of Arthropod Predator-Prey Systems (1978), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0429.92018
[9] Hausrath, A., Analysis of a model predator-prey system with refuges, J. Math. Anal. Appl., 181, 531-545 (1994) · Zbl 0799.34047
[10] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1993), Springer-Verlag: Springer-Verlag Berlin
[11] Kar, T. K., Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10, 681-691 (2005) · Zbl 1064.92045
[12] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72, 1-27 (1988) · Zbl 0676.35030
[13] McNair, J., The effects of refuges on predator-prey interactions: A reconsideration, Theoret. Population Biol., 29, 38-63 (1986) · Zbl 0594.92017
[14] Nirenberg, L., Topics in Nonlinear Functional Analysis (1973), Courant Institute of Mathematical Science: Courant Institute of Mathematical Science New York
[15] Sih, A., Prey refuges and predator-prey stability, Theoret. Population Biol., 31, 1-12 (1987)
[16] Sith, J., Models in Ecology (1974), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0312.92001
[17] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0508.35002
[18] Taylor, R., Predation (1984), Chapman & Holl: Chapman & Holl New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.