×

zbMATH — the first resource for mathematics

Kantenkohomologie. (German) Zbl 0512.32011

MSC:
32C35 Analytic sheaves and cohomology groups
32F10 \(q\)-convexity, \(q\)-concavity
32Sxx Complex singularities
32C30 Integration on analytic sets and spaces, currents
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Andreotti : Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves . Bull. Soc. math. France 91, 1-38 (1963). · Zbl 0113.06403 · doi:10.24033/bsmf.1587 · numdam:BSMF_1963__91__1_0 · eudml:87033
[2] A. Andreotti et F. Norguet : Probleme de Levi et convexité holomorphe pour les classes de cohomologie . Ann. Scuola norm. sup. Pisa 20, 197-241 (1966). · Zbl 0154.33504 · numdam:ASNSP_1966_3_20_2_197_0 · eudml:83379
[3] W. Barth : Der Abstand von einer algebraischen Mannigfaltigkeit im komplexprojektiven . Raum. Math. Ann. 187, 150-162 (1970). · Zbl 0184.31303 · doi:10.1007/BF01350179 · eudml:162013
[4] W. Barth : Transplanting cohomology classes in complex projective space . Amer. J. 92, 951-967 (1970). · Zbl 0206.50001 · doi:10.2307/2373404
[5] H. Grauert : Complex Morse Singularities . Nancy, 1980. · Zbl 0485.32008
[6] G. Horrocks and D. Mumford : A rank two vector bundle on P4 with 15 000 symmetries . Topology 12, 63-81 (1973). · Zbl 0255.14017 · doi:10.1016/0040-9383(73)90022-0
[7] M. Larsen : On the topology of complex projective manifolds . Invent. Math. 19, 251-260 (1973). · Zbl 0255.32004 · doi:10.1007/BF01390209 · eudml:142196
[8] A. Andreotti et H. Grauert : Théorèmes de finitude pour la cohomologie des espaces complexes . Bull. Soc. math. France 90, 193-259 (1962). · Zbl 0106.05501 · doi:10.24033/bsmf.1581 · numdam:BSMF_1962__90__193_0 · eudml:87019
[9] H. Grauert und R. Remmert : Theorie der Steinschen Räume . Springer, Berlin, Heidelberg, New York, 1977. · Zbl 0379.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.