×

zbMATH — the first resource for mathematics

Some curvature properties of complex surfaces. (English) Zbl 0512.53058

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q99 Complex manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frankel, T., Manifolds with positive curvature, Pacific J. Math., 11, 165-174 (1961) · Zbl 0107.39002
[2] Gauduchon, P., Fibrés Hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France, 105, 113-140 (1977) · Zbl 0382.53045
[3] Goldberg, S. I., Curvature and Homology (1962), New York: Academic Press, New York
[4] Gray, A., Nearly Kàhler manifolds, J. Diff. Geom., 4, 283-309 (1970) · Zbl 0201.54401
[5] Gray, A., Curvature identities for Hermitian and almost Hermitian manifolds, TÔhoku Math. J., 28, 601-612 (1976) · Zbl 0351.53040
[6] Gray, A., Chern numbers and curvature, American J. Math., 100, 463-475 (1978) · Zbl 0384.53027
[7] Howard, A.; Smyth, B., KÄhler surfaces of nonnegative curvature, J. Diff. Geom., 5, 491-502 (1971) · Zbl 0227.53021
[8] Kashiwada, T., Some properties of locally conformal KÄhler manifolds, Hokkaido Mathematical Journal, 8, 191-198 (1979) · Zbl 0424.53036
[9] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, I, II (1963), New York: Interscience Publ., New York · Zbl 0119.37502
[10] Kodaira, K., On the structure of compact complex analytic surfaces I, American J. Math., 86, 751-798 (1964) · Zbl 0137.17501
[11] Libermann, P., Sur le problème d’équivalence de certaines structures infinitésimales régulières, Ann. di Mat. Pura ed Appl., 36, 27-120 (1954) · Zbl 0056.15401
[12] Schouten, J. A., Ricci-Calculus (1954), Berlin: Springer, Berlin
[13] Vaisman, I., On locally conformal almost KÄhler manifolds, Israel J. Math., 24, 338-351 (1976) · Zbl 0335.53055
[14] Vaisman, I., Remarkable operators and commutation formulas on locally conformal KÄhler manifolds, Compositio Mathematica, 40, 227-259 (1980) · Zbl 0401.53019
[15] Vaisman, I., Some curvature properties of locally conformal KÄhler manifolds, Trans. Amer. Math. Soc., 259, 439-447 (1980) · Zbl 0435.53044
[16] Vaisman, I., On locally and globally conformal KÄhler manifolds, Trans. Amer. Math. Soc., 262, 533-542 (1980) · Zbl 0446.53048
[17] Weyl, A., Introduction à l’étude des variétés kÄhlériennes (1958), Paris: Hermann, Paris
[18] Yau, S. T., On the curvature of compact Hermitian manifolds, Inventiones Math., 25, 213-239 (1974) · Zbl 0299.53039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.