Heyde, C. C.; Westcott, M.; Williams, E. R. The asymptotic behavior of a random walk on a dual-medium lattice. (English) Zbl 0512.60063 J. Stat. Phys. 28, 375-380 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 2 Documents MSC: 60G50 Sums of independent random variables; random walks 60J65 Brownian motion 82B05 Classical equilibrium statistical mechanics (general) Keywords:anisotropic lattice; change-point; diffusion limit; oscillating Brownian motion PDF BibTeX XML Cite \textit{C. C. Heyde} et al., J. Stat. Phys. 28, 375--380 (1982; Zbl 0512.60063) Full Text: DOI References: [1] K. E. Shuler,Physica,95A:12 (1979). [2] V. Seshadri, K. Lindenberg, and K. E. Shuler,J. Stat. Phys. 21:517 (1979). · doi:10.1007/BF01011166 [3] K. E. Shuler and U. Mohanty,Proc. Nat. Acad. Sci. to appear (1981). [4] M. Westcott,J. Stat. Phys. 27:75 (1982). · Zbl 0512.60060 · doi:10.1007/BF01011741 [5] C. C. Heyde,J. Stat. Phys. 27:721 (1982). · Zbl 0511.60066 · doi:10.1007/BF01013444 [6] C. Stone,Illinois J. Math. 7:638 (1963). [7] J. B. Kemperman,Stoc. Proc. Appl. 2:1 (1974). · Zbl 0326.60081 · doi:10.1016/0304-4149(74)90010-6 [8] J. Keilson and J. A. Wellner,J. Appl. Prob. 15:300 (1978). · Zbl 0391.60072 · doi:10.2307/3213403 [9] P. Billingsley,Convergence of Probability Measures (Wiley, 1968). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.