×

zbMATH — the first resource for mathematics

On inequalities of Korn, Friedrichs and Babuska-Aziz. (English) Zbl 0512.73017

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
30A10 Inequalities in the complex plane
35A15 Variational methods applied to PDEs
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejet (Classe Sci. Math. Nat.) 705–724 (1909). · JFM 40.0884.02
[2] Friedrichs, K. O., On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Amer. Math. Soc. 41, 321–364 (1937). · JFM 63.0364.01 · doi:10.1090/S0002-9947-1937-1501907-0
[3] Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. of Math. 48, 441–471 (1947). · Zbl 0029.17002 · doi:10.2307/1969180
[4] Bernstein, B., & R. A. Toupin, Korn inequalities for the sphere and circle. Arch. Rational Mech. Anal. 6, 51–64 (1960). · Zbl 0094.30001 · doi:10.1007/BF00276153
[5] Payne, L. E., & H. F. Weinberger, On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89–98 (1961). · Zbl 0107.31105 · doi:10.1007/BF00277432
[6] Dafermos, C. M., Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19, 913–920 (1968). · Zbl 0169.55904 · doi:10.1007/BF01602271
[7] Hlaváček, I., & J. Nečas, On inequalities of Korn’s type. Part I and II. Arch. Rational Mech. Anal. 36, 305–334 (1970). · Zbl 0193.39001 · doi:10.1007/BF00249518
[8] Horgan, C. O., & J. K. Knowles, Eigenvalue problems associated with Korn’s inequalities. Arch. Rational Mech. Anal. 40, 384–402 (1971). · Zbl 0223.73011 · doi:10.1007/BF00251798
[9] Fichera, G., Existence theorems in elasticity; Boundary value problems of elasticity with unilateral constraints, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/2, pp. 347–424. Springer-Verlag, Berlin, Heidelberg, New York 1972.
[10] Gurtin, M. E., The linear theory of elasticity, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/2, pp. 1–295. Springer-Verlag, Berlin, Heidelberg, New York 1972.
[11] Knops, R. J., & E. W. Wilkes, Theory of elastic stability, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/3, pp. 125–302. Springer-Verlag, Berlin, Heidelberg, New York 1973.
[12] Horgan, C. O., On Korn’s inequality for incompressible media. SIAM J. Appl. Math. 28, 419–430 (1975). · Zbl 0269.73009 · doi:10.1137/0128036
[13] Horgan, C. O., Inequalities of Korn and Friedrichs in elasticity and potential theory. Z. Angew. Math. Phys. 26, 155–164 (1975). · Zbl 0308.35077 · doi:10.1007/BF01591503
[14] Villaggio, P., Qualitative Methods in Elasticity. Noordhoff, Leyden, 1977. · Zbl 0374.73001
[15] Babuška, I., & A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz ed., 5–359. Academic Press, New York, 1972.
[16] Oden, J. T., & J. N. Reddy, Variational Methods in Theoretical Mechanics. Springer-Verlag, Berlin, Heidelberg, New York 1976. · Zbl 0324.73001
[17] Ciarlet, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[18] Toupin, R. A., Saint-Venant’s principle. Arch. Rational Mech. Anal. 18, 83–96 (1965). · Zbl 0203.26803 · doi:10.1007/BF00282253
[19] Berdichevskii, V. L., On the proof of the Saint-Venant principle for bodies of arbitrary shape. J. Appl. Math. Mech. 38, 799–813 (1975). · Zbl 0349.73009 · doi:10.1016/0021-8928(74)90122-1
[20] Horgan, C. O., & J. K. Knowles, Recent developments concerning Saint-Venant’s principle, Advances in Applied Mechanics, J. W. Hutchinson ed., Vol. 23, Chapter 3, Academic Press, New York, 1983. · Zbl 0569.73010
[21] Ladyzhenskaya, O. A., & V. A. Solonnikov, Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations. J. Soviet Math. 10, 257–286 (1978). · Zbl 0388.35061 · doi:10.1007/BF01566606
[22] Horgan, C. O., & L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J. Appl. Math. 35, 97–116 (1978). · Zbl 0389.76037 · doi:10.1137/0135008
[23] Nitsche, J. A., On Korn’s second inequality. R.A.I.R.O. J. of Numerical Analysis 15, 237–248 (1981). · Zbl 0467.35019
[24] Mikhlin, S. G., Variational Methods in Mathematical Physics (translated by T. Boddington). Macmillan, New York, 1964. · Zbl 0119.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.