Nečas, Jindřich; Hlaváček, Ivan Solution of Signorini’s contact problem in the deformation theory of plasticity by secant modules method. (English) Zbl 0512.73097 Apl. Mat. 28, No. 3, 199-214 (1983). Reviewer: H. Bufler Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 Documents MSC: 74A55 Theories of friction (tribology) 74M15 Contact in solid mechanics 74C99 Plastic materials, materials of stress-rate and internal-variable type 74G30 Uniqueness of solutions of equilibrium problems in solid mechanics 74H25 Uniqueness of solutions of dynamical problems in solid mechanics 49J40 Variational inequalities Keywords:Kachanov’s iterative method; elastostatics; deformation; unilateral contact; elastoplastic body; rigid foundation; neglecting friction; governed by Hencky-von Mises stress strain relations; weak solution; minimum of potential energy; corresponding variational inequality; secant modules; classical Signorini’s problem; convergence; no numerical applications PDF BibTeX XML Cite \textit{J. Nečas} and \textit{I. Hlaváček}, Apl. Mat. 28, 199--214 (1983; Zbl 0512.73097) Full Text: EuDML Link OpenURL References: [1] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies. Elsevier, Amsterdam 1981. [2] J. Haslinger I. Hlaváček: Contact between elastic bodies. Apl. mat. 25 (1980), 324-348, 26 (1981), 263-290, 321-344. [3] I. Hlaváček J. Nečas: On inequalities of Korn’s type. Arch. Ratl. Mech. Anal., 36 (1970), 305-334. · Zbl 0193.39001 [4] J. Nečas: On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems. Rend. di Matematica 2 (1975), vol. 8, Ser. VL, 481-498. [5] L. M. Kačanov: Mechanika plastičeskich sred. Moskva 1948. [6] G. Fichera: Boundary value problems of elasticity with unilateral constraints. S. Flüge (ed): Encycl. of Physics, vol. VIa/2, Springer-Verlag, Berlin, 1972. [7] I. Hlaváček J. Lovíšek: A finite element analysis for the Signorini problem in plane elastostatics. Apl. mat. 22, (1977) 215-228, 25 (1980), 273-285. · Zbl 0369.65031 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.