×

zbMATH — the first resource for mathematics

Jacobi-sum Hecke characters and Gauss-sum identities. (English) Zbl 0513.12010

MSC:
11R42 Zeta functions and \(L\)-functions of number fields
11L10 Jacobsthal and Brewer sums; other complete character sums
11R18 Cyclotomic extensions
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Weil : Jacobi sums as ”Grössencharaktere” . Trans. Amer. Math. Soc. 75 (1952) 487-495. · Zbl 0048.27001
[2] A. Weil : Sommes de Jacobi et caractères de Hecke . Nachrich. der Akad. Göttingen (1974) 1-14. · Zbl 0367.10035
[3] P. Deligne : Valeurs de fonctions L et périodes d’intégrales . Proceedings of Symposia in Pure Mathematics 33 (1979) 313-346. · Zbl 0449.10022
[4] P. Deligne : Cycles de Hodge sur les varietes abeliennes , preprint.
[5] D. Kubert : Jacobi sums and Hecke characters , to appear. · Zbl 0577.12004
[6] H. Davenport and H. Hasse : Die Nullstellen der Kongruenz-zeta funktionen in gewissen zyklischen Fallen . J. reine angew Math. 172 (1935) 151-182. · Zbl 0010.33803
[7] S. Lichtenbaum : Jacobi-sum Hecke characters of imaginary quadratic fields , preprint. · Zbl 0584.12007
[8] L. Ahlfors : Complex analysis . McGraw-Hill, 1953.
[9] S. Lang : Algebraic number theory . Addison-Wesley, 1970. · Zbl 0211.38404
[10] R. Langlands : unpublished manuscript.
[11] B. Gross and N. Koblitz : Gauss sums and the p-adic \Gamma -function . Ann. of Math. 109 (1979) 569-581. · Zbl 0406.12010
[12] G.H. Hardy and E.M. Wright : An introduction to the theory of numbers , 4th ed. Oxford University Press, 1960. · Zbl 0086.25803
[13] I. Iwasawa : Some remarks on Hecke characters . International Symposium on Algebraic Number Theory, Kyoto, 1976. S. Iyanaga, ed. · Zbl 0364.12010
[14] R.J. Evans : Identities for products of Gauss sums over finite fields . To appear in L’Enseignement Math. · Zbl 0491.12020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.