×

zbMATH — the first resource for mathematics

On Hirzebruch’s examples of surfaces with \(c^2_1=3c_2\). (English) Zbl 0513.14008

MSC:
14F35 Homotopy theory and fundamental groups in algebraic geometry
14E20 Coverings in algebraic geometry
14J25 Special surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Fox, R.H.: Covering spaces with singularities. Algebraic geometry and topology, pp. 243-257. Princeton: Princeton Univ. Press 1957 · Zbl 0079.16505
[2] Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and geometry, Vol. II. Progress in Math., Vol. 36, pp. 113-140. Boston, Basel, Stuttgart: Birkhäuser 1983 · Zbl 0527.14033
[3] Kato, M.: On uniformization of orbifolds (preprint)
[4] Mostow, G.D.: Existence of nonarithmetic monodromy groups. Proc. Nat. Acad. Sci. USA78, 5948-5950 (1981) · Zbl 0551.32024 · doi:10.1073/pnas.78.10.5948
[5] Picard, E.: Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaire. Acta Math.2, 114-126 (1883) · JFM 15.0432.01 · doi:10.1007/BF02612158
[6] Shimura, G.: On purely transcendental fields of automorphic functions of several complex variables. Osaka J. Math.1, 1-14 (1964) · Zbl 0149.04302
[7] Terada, T.: Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométriques de plusieurs variables. J. Math. Kyoto Univ.13, 557-578 (1973) · Zbl 0279.32022
[8] Terada, T.: Fonctions hypergéométriquesF 1 et fonctions automorphes I. J. Math. Soc. Japan35, 451-475 (1983) · Zbl 0518.33001 · doi:10.2969/jmsj/03530451
[9] Terada, T.: Quelques propriétés géométrique de domaine deF 1 et le groupe de tresses colorées. Publ. RIMS17, 95-111 (1981) · Zbl 0466.33010 · doi:10.2977/prims/1195186705
[10] Terada, T.: Fonctions hypergéométriquesF 1 et fonctions automorphes II. Groupes discretes arithmétiquement définis (to appear in J. Math. Soc. Japan)
[11] Thurston, W.: The geometry and topology of three-manifolds. Princeton: Princeton Univ. Press (mimeographed notes 1978-1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.