Harris, Joe Theta-characteristics on algebraic curves. (English) Zbl 0513.14025 Trans. Am. Math. Soc. 271, 611-638 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 44 Documents MSC: 14K25 Theta functions and abelian varieties 14H20 Singularities of curves, local rings 14H40 Jacobians, Prym varieties Keywords:algebraic curve; circles of Appolonius; plane quartic; theta- characteristics; conductor ideal of Gorenstein singularity PDF BibTeX XML Cite \textit{J. Harris}, Trans. Am. Math. Soc. 271, 611--638 (1982; Zbl 0513.14025) Full Text: DOI References: [1] H. F. Baker, Principles of geometry, Vol. IV, Chapter II; Cambridge Univ. Press, 1925. · JFM 51.0531.07 [2] E. Griffin, Thesis, Harvard Univ., Cambridge, Mass., 1982. [3] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. · Zbl 0408.14001 [4] H. Hilton, Plane algebraic curves, Oxford, 1920. · JFM 47.0611.03 [5] Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685 – 724. · Zbl 0433.14040 [6] Heisuke Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 30 (1957), 177 – 195. · Zbl 0099.15702 [7] Serge Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373 – 390. · Zbl 0046.26202 · doi:10.2307/1969785 · doi.org [8] David Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181 – 192. · Zbl 0216.05904 [9] G. Salmon, Conic sections, Longman, Greens & Co., London, 1879. · Zbl 0211.24002 [10] -, Higher plane curves, Hodges, Foster & Co., Dublin, 1879. [11] C. T. C. Wall, Nets of quadrics, and theta-characteristics of singular curves, Philos. Trans. Roy. Soc. London Ser. A 289 (1978), no. 1357, 229 – 269. · Zbl 0382.14011 · doi:10.1098/rsta.1978.0060 · doi.org This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.