×

zbMATH — the first resource for mathematics

Primitive ideals and orbital integrals in complex exceptional groups. (English) Zbl 0513.22009

MSC:
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
17B35 Universal enveloping (super)algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scD. Alvis and G. Lusztig, On Springer’s correspondence for simple groups of type En (n = 6, 7, 8), preprint. · Zbl 0492.20028
[2] Barbasch, D; Vogan, D, Primitive ideals and orbital integrals in complex classical groups, Math. ann., 259, 153-199, (1982) · Zbl 0489.22010
[3] Beilinson, A; Bernstein, J, Localisation de \(g\)-modules, C. R. acad. sci. Paris, Sér. I, 292, 15-18, (1981) · Zbl 0476.14019
[4] Benson, C, The generic degrees of the irreducible characters of E8, Comm. algebra, 7, 1199-1209, (1979) · Zbl 0416.20040
[5] Beynon, W; Lusztig, G, Some numerical results on the characters of exceptional Weyl groups, (), 417-426 · Zbl 0416.20033
[6] Borho, W; Jantzen, J.C, Über primitive ideale in der einhüllenden einer halbeinfacher Lie-algebra, Invent. math., 39, 1-53, (1977) · Zbl 0327.17002
[7] Brylinski, J; Kashiwara, M, Kazhdan-Lusztig conjecture and holonomic systems, Invent. math., 64, 387-410, (1981) · Zbl 0473.22009
[8] \scC. De Concini and C. Procesi, Symmetric functions, conjugacy classes, and the flag variety, preprint. · Zbl 0475.14041
[9] Duflo, M, Sur la classification des ideaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of math., 105, 107-120, (1977) · Zbl 0346.17011
[10] Dynkin, E.B; Dynkin, E.B, Semisimple subalgebras of semisimple Lie algebras, Amer. math. soc. transl., ser. 2, Mat. sb. (N.S.), 30, 349-462, (1952) · Zbl 0048.01701
[11] \scR. Howe, Wave front sets of representations of Lie groups, preprint. · Zbl 0494.22010
[12] Jantzen, J.C, Moduln mit einem höchsten gewicht, () · Zbl 0426.17001
[13] \scA. Joseph, A characteristic variety for the primitive spectrum of a semisimple Lie algebra, unpublished manuscript. · Zbl 0374.17004
[14] Joseph, A, Dixmier’s problem for Verma and principal series submodules, J. London math. soc., 20, 193-204, (1979) · Zbl 0421.17005
[15] Joseph, A, W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, (), 116-135
[16] Joseph, A, Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. algebra, 65, 284-306, (1980) · Zbl 0441.17004
[17] Kazhdan, D; Lusztig, G, Representations of Coxeter groups and Hecke algebras, Invent. math., 53, 165-184, (1979) · Zbl 0499.20035
[18] Lusztig, G, A class of irreducible representations of a Weyl group, (), 323-335, (3) · Zbl 0435.20021
[19] Lusztig, G, A class of irreducible representations of a Weyl group II, (), 219-226 · Zbl 0511.20034
[20] Lusztig, G; Spaltenstein, N, Induced unipotent classes, J. London math. soc., 19, 41-52, (1979) · Zbl 0407.20035
[21] Spaltenstein, N, Classes unipotentes et sous-groupes de Borel, () · Zbl 0486.20025
[22] Springer, T, A construction of representations of Weyl groups, Invent. math., 44, 279-293, (1978) · Zbl 0376.17002
[23] Vogan, D, A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. ann., 242, 209-224, (1979) · Zbl 0387.17007
[24] Vogan, D, Ordering of the primitive spectrum of a semisimple Lie algebra, Math. ann., 248, 195-203, (1980) · Zbl 0414.17006
[25] Warner, G, Harmonic analysis on semi-simple Lie groups II, (1972), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0265.22021
[26] Alvis, D, Induce/restrict matrices for the exceptional Weyl groups, (1981), Massachusetts Institute of Technology, manuscript
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.