×

Primitive ideals and orbital integrals in complex exceptional groups. (English) Zbl 0513.22009


MSC:

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
17B35 Universal enveloping (super)algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Barbasch, D.; Vogan, D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259, 153-199 (1982) · Zbl 0489.22010
[3] Beilinson, A.; Bernstein, J., Localisation de \(g\)-modules, C. R. Acad. Sci. Paris, Sér. I, 292, 15-18 (1981) · Zbl 0476.14019
[4] Benson, C., The generic degrees of the irreducible characters of \(E_8\), Comm. Algebra, 7, 1199-1209 (1979) · Zbl 0416.20040
[5] Beynon, W.; Lusztig, G., Some numerical results on the characters of exceptional Weyl groups, (Proc. Cambridge Philos. Soc., 84 (1978)), 417-426 · Zbl 0416.20033
[6] Borho, W.; Jantzen, J. C., Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-algebra, Invent. Math., 39, 1-53 (1977) · Zbl 0327.17002
[7] Brylinski, J.; Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64, 387-410 (1981) · Zbl 0473.22009
[9] Duflo, M., Sur la classification des ideaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of Math., 105, 107-120 (1977) · Zbl 0346.17011
[10] Dynkin, E. B., Mat. Sb. (N.S.), 30, 349-462 (1952) · Zbl 0048.01701
[12] Jantzen, J. C., Moduln mit einem höchsten Gewicht, (Lecture Notes in Math. No. 750 (1979), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) · Zbl 0426.17001
[14] Joseph, A., Dixmier’s problem for Verma and principal series submodules, J. London Math. Soc., 20, 193-204 (1979) · Zbl 0421.17005
[15] Joseph, A., \(W\)-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, (Noncommutative Harmonic Analysis. Noncommutative Harmonic Analysis, Lecture Notes in Mathematics No. 728 (1979), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 116-135 · Zbl 0422.17004
[16] Joseph, A., Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. Algebra, 65, 284-306 (1980) · Zbl 0441.17004
[17] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 165-184 (1979) · Zbl 0499.20035
[18] Lusztig, G., A class of irreducible representations of a Weyl group, (Proc. Kon. Nederl. Akad., A, 82 (1979)), 323-335, (3) · Zbl 0435.20021
[19] Lusztig, G., A class of irreducible representations of a Weyl group II, (Proc. Kon. Nederl. Akad., A, 85 (1982)), 219-226 · Zbl 0511.20034
[20] Lusztig, G.; Spaltenstein, N., Induced unipotent classes, J. London Math. Soc., 19, 41-52 (1979) · Zbl 0407.20035
[21] Spaltenstein, N., Classes unipotentes et sous-groupes de Borel, (Lecture Notes in Mathematics No. 946 (1982), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) · Zbl 0486.20025
[22] Springer, T., A construction of representations of Weyl groups, Invent. Math., 44, 279-293 (1978) · Zbl 0376.17002
[23] Vogan, D., A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann., 242, 209-224 (1979) · Zbl 0387.17007
[24] Vogan, D., Ordering of the primitive spectrum of a semisimple Lie algebra, Math. Ann., 248, 195-203 (1980) · Zbl 0414.17006
[25] Warner, G., Harmonic Analysis on Semi-simple Lie Groups II (1972), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0265.22021
[26] Alvis, D., Induce/restrict matrices for the exceptional Weyl groups (1981), Massachusetts Institute of Technology, manuscript
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.