×

zbMATH — the first resource for mathematics

Comparing measure theoretic entropy for sigma-finite measures with topological entropy. (English) Zbl 0513.28006
MSC:
28D20 Entropy and other invariants
54C70 Entropy in general topology
28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
PDF BibTeX Cite
Full Text: EuDML
References:
[1] ADLER R. L., KONHEIM A. G., McANDREW M. H.: Topological entropy. Trans. Amer. Math. Soc., 114, 1965, 309-319. · Zbl 0127.13102
[2] BILLINGSLEY P.: Ergodic Theory and Information. John Wiley and Sons, 1965. · Zbl 0141.16702
[3] DENKER M., GRILLENBERG, Ch., SIGMUND K.: Ergodic Theory on Compact Spaces. Lect. Notes in Math. 527, Springer, Berlin 1976.
[4] FRIEDMAN N. A.: Introduction to Ergodic Theory. Van Nostrand, New York 1970. · Zbl 0212.40004
[5] GOODMAN T.N.T.: Relating Topological Entropy with Measure Theoretic Entropy. Bull. London Math. Soc. 3, 1971, 176-180. · Zbl 0219.54037
[6] GOODWIN L.: Comparing Topological Entropy with Measure Theoretic Entropy. Amer. J. Math. 94, 1972, 366-388. · Zbl 0249.54021
[7] MISIUREWICZ M.: Topological Conditional Entropy. Studia Math. T. LV, 1976, 175-200. · Zbl 0355.54035
[8] WALTERS P.: Ergodic Theory - Introductory Lectures. Springer 458, 1975. · Zbl 0299.28012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.