×

zbMATH — the first resource for mathematics

Obere Schranken für Eigenfunktionen eines Operators -Delta+q. (German) Zbl 0513.35009

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
35P99 Spectral theory and eigenvalue problems for partial differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, R.A.: Sobolev Spaces. New York: Academic Press 1975 · Zbl 0314.46030
[2] Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions ofN-body Schr?dinger operators. Princeton: Princeton University Press 1982 · Zbl 0503.35001
[3] Albeverio, S.: On Bound States in the Continuum ofN-body Systems and the Virial Theorem. Ann. Physics71, 167-276 (1972)
[4] Amrein, W., Berthier, A.-M., Georgescu, V.: Estimations du type Hardy ou Carleman pour des op?rateurs diff?rentiels ? coefficients op?ratoriels. C. R. Acad. Sci. Paris S?r. I Math.295, 575-578 (1982) · Zbl 0542.47038
[5] Bardos, C., M?rigot, M.: D?croissance exponentielle de la solutionL 2 du probl?me de Dirichlet dans le compl?mentaire d’un ferm? born?. C. R. Acad. Sci. Paris S?r. A281, 561-563 (1975)
[6] Bardos, C., Merigot, M.: Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian. Proc. Roy. Soc. Edinburgh Sect. A76, 323-344 (1977) · Zbl 0351.35009
[7] Carmona, R., Simon, B.: Pointwise Bounds on Eigenfunctions and Wave Packets inN-Body Quantum Systems, V. Lower Bounds and Path Integrals. Comm. Math. Phys.80, 59-98 (1981) · Zbl 0464.35085
[8] Combes, J.M., Thomas, L.: Asymptotic Behaviour of Eigenfunctions for Multiparticle Schr?dinger Operators. Comm. Math. Phys.34, 251-270 (1973) · Zbl 0271.35062
[9] Froese, R., Herbst, I.: Exponential Bounds and Absence of Positive Eigenvalues forN-body Schr?dinger Operators. Institut Mittag-Leffler: Report No. 7, 1982 · Zbl 0509.35061
[10] Glazman, I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Jerusalem: Israel Program for Scientific Translations 1965 · Zbl 0143.36505
[11] Hartman, P., Putnam, C.R.: The gaps in the essential spectra of wave equations. Amer. J. Math.72, 849-862 (1950) · Zbl 0038.24804
[12] Hellwig, G.: Partielle Differentialgleichungen. Stuttgart: Teubner 1960
[13] Hellwig, G.: Differentialoperatoren der mathematischen Physik. Berlin G?ttingen Heidelberg: Springer 1964 · Zbl 0134.08602
[14] Hinz, A.M.: Punktweise obere Schranken f?r Eigenfunktionen bei Schr?dingeroperatoren. Dissertation, M?nchen 1982 · Zbl 0537.35022
[15] Kato, T.: Groth Properties of Solutions of the Reduced Wave Equation With a Variable Coefficient. Comm. Pure Appl. Math.12, 403-425 (1959) · Zbl 0091.09502
[16] Klaus, M.: Some applications of the Birman-Schwinger principle. Helv. Phys. Acta55, 49-68 (1982)
[17] Reed, M., Simon, B.: Methods of modern mathematical physics, IV: Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[18] Schmincke, U.-W.: ?ber das Verhalten der Eigenfunktionen eines singul?ren elliptischen Differentialoperators. Math. Z.111, 267-288 (1969) · Zbl 0181.11601
[19] Simader, C.G.: Bemerkungen ?ber Schr?dinger-Operatoren mit stark singul?ren Potentialen. Math. Z.138, 53-70 (1974) · Zbl 0317.35028
[20] Simon, B.: Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems. III. Trans. Amer. Math. Soc.208, 317-329 (1975) · Zbl 0305.35078
[21] ?nol’, ?.?.: O povedenii sobstvennych funkcij uravnenija ?redingera. Mat. Sb.42, 273-286 (1957), erratum46, 259 (1958)
[22] Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press 1971 · Zbl 0232.42007
[23] Weidmann, J.: Lineare Operatoren in Hilbertr?umen, Stuttgart: Teubner 1976 · Zbl 0344.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.