zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniform approximation by Szasz-Mirakjan type operators. (English) Zbl 0513.41013

41A36Approximation by positive operators
41A65Abstract approximation theory
Full Text: DOI
[1] M. Becker, Global approximation theorems for Szász--Mirakjan and Baskakov operators in polynomial weight spaces,Indiana Univ. Math. J.,27 (1978), 127--142. · Zbl 0368.41024 · doi:10.1512/iumj.1978.27.27011
[2] M. Becker, An elementary proof of the inverse theorem for Bernstein polynomials,Aequationes Math.,19 (1979), 145--150. · Zbl 0444.41007 · doi:10.1007/BF02189862
[3] M. Becker and R. J. Nessel, An elementary approach to inverse approximation theorems,J. Approx. Theory,23 (1978), 99--103. · Zbl 0388.41010 · doi:10.1016/0021-9045(78)90094-1
[4] M. Becker and R. J. Nessel, Iteration von Operatoren und Saturation in lokal konvexen Räumen,Forschungsberichte des Landes Nordrhein-Westfalen Nr. 2470 (1975), 26--49.
[5] M. Becker, D. Kucharski, R. J. Nessel, Global Approximation Theorems for the Szász--Mirakjan Operators in Exponential Weight Sapces, In:Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977), Birkhäuser Verlag, Basel.
[6] H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials,Indiana Univ. Math. J.,21 (1972), 693--708. · Zbl 0262.41006 · doi:10.1512/iumj.1972.21.21054
[7] G. H. Hardy,Divergent Series (Oxford, 1949).
[8] B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators,Bull. Soc. Math. Roumanie,14 (62) (1970), 9--13. · Zbl 0226.41004