Bajborodov, S. P. Lebesgue constants of polyhedra. (English. Russian original) Zbl 0513.42018 Math. Notes 32, 895-898 (1983); translation from Mat. Zametki 32, No. 6, 817-822 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 42B15 Multipliers for harmonic analysis in several variables Keywords:integral lattice; polyhedron; Lebesgue constant PDF BibTeX XML Cite \textit{S. P. Bajborodov}, Math. Notes 32, 895--898 (1982; Zbl 0513.42018); translation from Mat. Zametki 32, No. 6, 817--822 (1982) Full Text: DOI References: [1] V. A. Yudin, ?Behavior of the Lebesgue constant,? Mat. Zametki,17, No. 3, 401-405 (1975). [2] V. A. Yudin, ?Lower estimate for the Lebesgue constant,? Mat. Zametki,25, No. 1, 119-122 (1979). [3] É. S. Belinskii, ?Behavior of the Lebesgue constants of certain methods of summation of multiple Fourier series,? in: Matric Questions of the Theory of Functions and Mappings [in Russian], Vol. 8, Naukova Dumka, Kiev (1977), pp. 19-40. [4] E. Stein, Singular Integrals and Differential Properties of Functions [Russian translation], Mir, Moscow (1973). [5] C. S. Herz, ?On the mean inversion of Fourier and Hankel transforms,? Proc. Nat. Acad. Sci. USA,40, 996-999 (1954). · Zbl 0059.09901 · doi:10.1073/pnas.40.10.996 [6] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (1971). · Zbl 0232.42007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.