Giaquinta, Mariano; Giusti, Enrico Differentiability of minima of non-differentiable functionals. (English) Zbl 0513.49003 Invent. Math. 72, 285-298 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 71 Documents MSC: 49J10 Existence theories for free problems in two or more independent variables 26B05 Continuity and differentiation questions 26B35 Special properties of functions of several variables, Hölder conditions, etc. 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:differentiability of minima; non-differentiable functionals; regularity of first derivatives Citations:Zbl 0494.49031 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. S.N.S. Pisa17, 137-160 (1963) · Zbl 0121.29201 [2] Campanato, S.: Equazioni ellittiche del secondo ordine e spazi ?2,?. Ann. Mat. Pura e Appl.69, 321-380 (1965) · Zbl 0145.36603 · doi:10.1007/BF02414377 [3] De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. (3)3, 25-43 (1957) · Zbl 0084.31901 [4] Giaquinta, M.: Multiple integrals in the Calculus of Variations and non linear elliptic systems, Vorlesungsreihe SFB 72 Bonn n.6 (1981) · Zbl 0498.49001 [5] Giaquinta, M., Giusti, E.: Non linear elliptic systems with quadratic growth. Manuscripta math.24, 323-349 (1978) · Zbl 0378.35027 · doi:10.1007/BF01167835 [6] Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math.148, 31-46 (1982) · Zbl 0494.49031 · doi:10.1007/BF02392725 [7] Giaquinta, M., Giusti, E.: Quasi-minima, to appear · Zbl 0541.49008 [8] Giaquinta, M., Modica, G.: Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta math.28, 109-158 (1979) · Zbl 0411.35018 · doi:10.1007/BF01647969 [9] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0361.35003 [10] Giusti, E.: Equazioni ellittiche del secondo ordine. Quaderni Unione Mat. Italiana n.6 (1978); Ed. Pitagora, Bologna · Zbl 1308.35001 [11] Giusti, E.: Regolarità parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario. Ann. Scuola Norm. Sup. Pisa23, 115-141 (1969) · Zbl 0175.40102 [12] Giusti, E., Miranda, M.: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasilineari. Arch. Rat. Mech. Anal.31, 173-184 (1968) · Zbl 0167.10703 · doi:10.1007/BF00282679 [13] Ivert, P.A.: Partial regularity of vector valued functions minimizing variational integrals, preprint [14] Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and quasilinear elliptic equations. New York: Acad. Press 1968 · Zbl 0164.13002 [15] Morrey, C.B., Jr.: Second order elliptic systems of differential equations. Ann. of Math. Studies n. 33, Princeton Univ. Press 1954, pp. 101-159 · Zbl 0057.08301 [16] Morrey, C.B., Jr.: Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0142.38701 [17] Morrey, C.B., Jr.: Partial regularity results for non linear elliptic systems. J. Math. and Mech.17, 649-670 (1968) · Zbl 0175.11901 [18] Phillips, D.: A minimization problem and the regularity of solutions in the presence of a free boundary, pre-print This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.