Naturally reductive metrics of nonpositive Ricci curvature. (English) Zbl 0513.53049


53C30 Differential geometry of homogeneous manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI


[1] J. E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215, iii+72. · Zbl 0404.53044
[2] E. D. Deloff, Naturally reductive metrics and metrics with volume preserving geodesic symmetries on NC algebras, Thesis, Rutgers, 1979.
[3] C. Gordon, Naturally reductive Riemannian manifolds, preprint 1984.
[4] Carolyn S. Gordon and Edward N. Wilson, The fine structure of transitive Riemannian isometry groups. I, Trans. Amer. Math. Soc. 289 (1985), no. 1, 367 – 380. · Zbl 0565.53030
[5] SigurĂ„’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[6] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. · Zbl 0246.53031
[7] M. L. Leite and I. Dotti de Miatello, Metrics of negative Ricci curvature on \?\?(\?,\?), \?\ge 3, J. Differential Geom. 17 (1982), no. 4, 635 – 641 (1983). · Zbl 0482.53037
[8] John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293 – 329. · Zbl 0341.53030
[9] Wolfgang Ziller, Homogeneous Einstein metrics, Global Riemannian geometry (Durham, 1983) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, pp. 126 – 135. · Zbl 0615.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.