zbMATH — the first resource for mathematics

On a hybrid experimental design. (English) Zbl 0513.62076

62K05 Optimal statistical designs
90C90 Applications of mathematical programming
62J05 Linear regression; mixed models
90C25 Convex programming
Full Text: EuDML
[1] A. C. Atkinson: Planning experiments to detect inadequate regression models. Biometrika 59 (1972), 275-293. · Zbl 0243.62046
[2] A. C. Atkinson: Planning experiments for model testing and discrimination. Math. Operationsforsch. Statist. 6 (1975), 252-267. · Zbl 0342.62049
[3] D. M. Borth: A total entropy criterion for the dual problem of model discrimination and parameter estimation. J. Roy. Statist. Soc. Ser. B 37 (1975), 77-87. · Zbl 0297.62061
[4] V. V. Fedorov: Theory of Optimal Design. Nauka, Moskva, 1971. In Russian. · Zbl 0261.62002
[5] V. V. Fedorov, A. Pázman: Design of physical experiments. Fortschr. Phys. 16 (1968), 325-355.
[6] M. Hamala: Nonlinear Programming. ALFA, Bratislava 1972. In Slovak. · Zbl 0426.90070
[7] W. J. Hill W. G. Hunter, and D. W. Wichern: A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics 10 (1968), 145-160.
[8] E. Lauter: Experimental design in a class of models. Math. Operationsforsch. Statist. 5 (1974), 379-398.
[9] J. Mikulecká: A Hybrid Optimal Design of Experiments. Ph. D. Dissertation, Comenius University, Bratislava 1981. In Slovak.
[10] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs. Ann. Statist. 2 (1974), 216-218. · Zbl 0274.62047
[11] A. Pázman: Foundations of Optimization of Experiments. Veda, Bratislava 1980. In Slovak.
[12] A. Pázman: Some features of the optimal design theory - A survey. Math. Operationsforsch. Statist. Ser. Statist. 11 (1980), 415-446. · Zbl 0445.62084
[13] M. J. D. Powell: A method for nonlinear constrains in minimization problems. Optimization (R. Fletcher, Academic Press, London-New York 1969. · Zbl 0194.47701
[14] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1970. · Zbl 0193.18401
[15] R. T. Rockafellar: The multiplier method of Hestens and Powell applied to convex programming. J. Optim. Theory Appl. 12 (1973), 555-561. · Zbl 0254.90045
[16] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Programming 5 (1973), 354-373. · Zbl 0279.90035
[17] S. M. Stigler: Optimal experimental design for polynomial regression. J. Amer. Statist. Assoc. 66 (1971), 311-318. · Zbl 0217.51701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.