×

zbMATH — the first resource for mathematics

On the vibration problem for an elastic body surrounded by a slightly compressible fluid. (English) Zbl 0513.73055

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] S. BOCHNER and W.T. MARTIN, Severai complex variables, Princeton Univ. Press, Princeton (1948). Zbl0041.05205 MR27863 · Zbl 0041.05205
[2] S. CERNEAU and E. SANCHEZ-PALENCIA, Sur les vitrations libres des corps élastiquesplongés dans les fluides, Jour. Méca., 15(1976), pp. 399-425. Zbl0332.76058 MR428884 · Zbl 0332.76058
[3] T. KATO, Perturbation theory for linear operators, Springer, Berlin (1966). Zbl0148.12601 · Zbl 0148.12601
[4] K. KNOPP, Theory offunctions, Part II, Dover, New-York.
[5] R. KRESS, On the limiting behaviour of solutions to intégral équations associatedwith time harmonie wave équations for small frequencies, Math. Meth. Appl. Sci.7 (1979), pp. 89-100. Zbl0418.35031 MR548408 · Zbl 0418.35031 · doi:10.1002/mma.1670010108
[6] [6] G. HACHEM, Sur les fréquences de diffusion(scattering) d’un corps élastique coupléavec l’air, Anna. Fac. Sci. Toulouse, 2 (1980), pp. 193-218. Zbl0481.35070 MR614012 · Zbl 0481.35070 · doi:10.5802/afst.554 · numdam:AFST_1980_5_2_3-4_193_0 · eudml:73109
[7] P. LAX and R. PHILLIPS, Scattering theory, cad. Press, New-York (1967). Zbl0186.16301 MR217440 · Zbl 0186.16301
[8] H. MORAND and R. OHAYON, Substructure variational analysis of the vibrations ofcoupled fluid-structure Systems. Finite element results, Int. J. for Num. Meth. inEngng., 14 (1979), pp. 741-755. Zbl0402.73052 · Zbl 0402.73052 · doi:10.1002/nme.1620140508
[9] B. NICOLAS-VULLIERME, R. OHAYON, R. VALID, Vibrations harmoniques de struc-tures élastiques immergées dans unliquide, 81e session A.T.M.A., Paris (mai 1981), T. P.,O.N.E.R.A., n^\circ 1981-40.
[10] R. OHAYON, R. VALID, True symmetrie formulations offree vibrations of fluid-structure interaction, Proc. Int.Conf. on Num. Meth. forCoupled Problems. Univ.of Swansea (sept. 1981) T.P., O.N.E.R.A., n^\circ 1981-78.
[11] E. SANCHEZ-PALENCIA, Non homogeneous media and vibration theory, Lect. Notes Phys., 127, Springer, Berlin (1980). Zbl0432.70002 · Zbl 0432.70002
[12] V. I. SMIRNOV, A course ofhigher mathematics, vol. IV,Pergamon, Oxford (1964).
[13] S. STEINBERG, Meromorphic families of compact operators, Arch. Rat.Mech. Anal.,31 (1968), pp. 372-379. Zbl0167.43002 MR233240 · Zbl 0167.43002 · doi:10.1007/BF00251419
[14] T. C. Su, The effect ofviscosïty onfree vibrations of submerged fluid-fïlled sphericalshells, Jour. Sound Vibr., 77(1981), pp. 101-126. Zbl0477.73051 · Zbl 0477.73051 · doi:10.1016/S0022-460X(81)80011-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.