×

zbMATH — the first resource for mathematics

Strongly Cohen-Macaulay schemes and residual intersections. (English) Zbl 0514.13011

MSC:
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14M10 Complete intersections
14A05 Relevant commutative algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307 – 323. · Zbl 0263.14019
[2] Lâcezar Avramov and Jürgen Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z. 175 (1980), no. 3, 249 – 260. · Zbl 0461.14014 · doi:10.1007/BF01163026 · doi.org
[3] David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259 – 268. · Zbl 0264.13007 · doi:10.1016/0021-8693(73)90044-6 · doi.org
[4] R. Fossum, H. Foxby, P. Griffith and I. Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1976). · Zbl 0321.13013
[5] Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Paper in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. · Zbl 0208.30304
[6] Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415 – 437. · Zbl 0286.13013 · doi:10.1080/00927877408548627 · doi.org
[7] J. Herzog, Komplexe, Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschriff, Regensburg Universität, 1974.
[8] Jürgen Herzog, Certain complexes associated to a sequence and a matrix, Manuscripta Math. 12 (1974), 217 – 248. · Zbl 0278.13010 · doi:10.1007/BF01155515 · doi.org
[9] J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53 – 83. · Zbl 0515.13018 · doi:10.1016/0021-8693(83)90173-4 · doi.org
[10] J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53 – 83. · Zbl 0515.13018 · doi:10.1016/0021-8693(83)90173-4 · doi.org
[11] Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043 – 1062. · Zbl 0505.13003 · doi:10.2307/2374083 · doi.org
[12] -, The Koszul homology of an ideal, Advances in Math. (to appear). · Zbl 0585.13006
[13] Craig Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), no. 1, 121 – 137. · Zbl 0479.13008
[14] -, The theory of \( d\)-sequences and powers of ideals, Advances in Math. (to appear).
[15] -, The invariants of liaison, Proc. Third Midwest Algebraic Geom. Conf., Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear). · Zbl 0513.13009
[16] Steven L. Kleiman, Multiple-point formulas. I. Iteration, Acta Math. 147 (1981), no. 1-2, 13 – 49. · Zbl 0479.14004 · doi:10.1007/BF02392866 · doi.org
[17] M. Kühl, Über die symmetrische Algebra eines Ideals, dissertation, Essen, 1981.
[18] Stephen Lichtenbaum, On the vanishing of \?\?\? in regular local rings, Illinois J. Math. 10 (1966), 220 – 226. · Zbl 0139.26601
[19] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0818.18001
[20] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271 – 302 (French). · Zbl 0298.14022 · doi:10.1007/BF01425554 · doi.org
[21] -, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1973).
[22] A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203 – 224. · Zbl 0467.13009 · doi:10.2307/2374214 · doi.org
[23] Giuseppe Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), no. 3, 239 – 255. · Zbl 0439.13002 · doi:10.1007/BF01303330 · doi.org
[24] W. V. Vasconcelos, On the homology of \?/\?², Comm. Algebra 6 (1978), no. 17, 1801 – 1809. · Zbl 0393.13002 · doi:10.1080/00927877808822322 · doi.org
[25] Junzo Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227 – 232. · Zbl 0242.13019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.