Arthur, James A Paley-Wiener theorem for real reductive groups. (English) Zbl 0514.22006 Acta Math. 150, 1-89 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 42 Documents MSC: 22E30 Analysis on real and complex Lie groups 43A80 Analysis on other specific Lie groups Keywords:reductive Lie group; Paley-Wiener problem; Fourier transform; tau- spherical function; Hecke algebra; Eisenstein integrals; Plancherel formula × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Campoli, O.,The complex Fourier transform on rank one semisimple Lie groups. Thesis, Rutgers University, 1977. [2] Casselman, W., Jacquet modules for real reductive groups.Proc. Int. Cong. Math., Helsinki, 1978, 557–563. [3] Casselman, W., The Bruhat filtration of principal series. In preparation. · Zbl 0472.22004 [4] Cohn, L.,Analytic theory of Harish-Chandra’s C-function. Lecture Notes in Mathematics, 429, Springer-Verlag. · Zbl 0342.33026 [5] Delorme, P., Théorème de type Paley-Wiener pour les groupes de Lie semisimples réels avec une seule classe de conjugaison de sous-groupes de Cartan. Preprint. · Zbl 0517.22011 [6] Ehrenpreis, L. &Mautner, F. I., Some properties of the Fourier transform on semisimple Lie groups I.Ann. of Math., 61 (1955), 406–439. · Zbl 0066.35701 · doi:10.2307/1969808 [7] –, Some properties of the Fourier transform on semisimple Lie groups, II.Trans. Amer. Math. Soc., 84 (1957), 1–55. · Zbl 0079.13201 [8] Gangolli, R., On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups.Ann. of Math., 93 (1971), 150–165. · Zbl 0232.43007 · doi:10.2307/1970758 [9] Harish-Chandra, Some results on differential equations. Manuscript (1960). · Zbl 0161.33803 [10] Harish-Chandra, Differential equations and semisimple Lie groups. Manuscript (1960). · Zbl 0080.10202 [11] – Harmonic analysis on real reductive groups, I.J. Funct. Anal., 19 (1975), 104–204. · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8 [12] – Harmonic analysis on real reductive groups II.Invent. Math., 36 (1976), 1–55. · Zbl 0341.43010 · doi:10.1007/BF01390004 [13] –, Harmonic analysis on real reductive groups, III.Ann. of Math., 104 (1976), 117–201. · Zbl 0331.22007 · doi:10.2307/1971058 [14] Helgason, S., An analog of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces.Math. Ann., 165 (1966), 297–308. · Zbl 0178.17101 · doi:10.1007/BF01344014 [15] – A duality for symmetric spaces with applications to group representations.Adv. in Math., 5 (1970), 1–154. · Zbl 0209.25403 · doi:10.1016/0001-8708(70)90037-X [16] – The surjectivity of invariant differential operators on symmetric spaces I.Ann. of Math., 98 (1973), 451–479. · Zbl 0274.43013 · doi:10.2307/1970914 [17] – A duality for symmetric spaces with applications to group representations II.Adv. in Math., 22 (1976), 187–210. · Zbl 0351.53037 · doi:10.1016/0001-8708(76)90153-5 [18] Johnson, K. D., Differential equations and an analogue of the Paley-Wiener theorem for linear semisimple Lie groups.Nagoya Math. J., 64 (1976), 17–29. · Zbl 0329.43008 [19] Kawazoe, T., An analogue of Paley-Wiener theorem on semisimple Lie groups and functional equations for Eisenstein integrals.Tokyo J. Math., 3 (1980), 219–248. · Zbl 0455.43007 · doi:10.3836/tjm/1270472995 [20] Kawazoe, T. An analogue of Paley-Wiener theorem on semi-simple Lie groups and functional equations for Eisenstein integrals. Preprint. [21] Langlands, R. P., On the classification of irreducible representations of real algebraic groups. Preprint. · Zbl 0741.22009 [22] Langlands, R. P.,On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, 544 (1976). · Zbl 0332.10018 [23] Wallach, N., On Harish-Chandra’s generalizedC-functions.Amer. J. Math., 97 (2) 1975, 386–403. · Zbl 0312.22010 · doi:10.2307/2373718 [24] Warner, G.,Harmonic analysis on semisimple Lie groups II. Springer-Verlag, Berlin, New York, 1972. · Zbl 0265.22021 [25] Zelobenko, D. P., Harmonic analysis on complex semisimple Lie groups.Proc. Int. Cong. Math., Vancouver, 1974, Vol. II, 129–134. · Zbl 0283.22010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.