×

A Gelfand-Neumark theorem for C*-alternative algebras. (English) Zbl 0514.46047


MSC:

46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
46L05 General theory of \(C^*\)-algebras
46L35 Classifications of \(C^*\)-algebras
46K10 Representations of topological algebras with involution
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Albert, A.A.: Power-associative rings. Trans. Amer. Math. Soc.64, 552-593 (1948) · Zbl 0033.15402
[2] Alfsen, E.M., Shultz, F.W., St?rmer, E.: A Gelfand-Neumark Theorem for Jordan Algebras. Advances in Math.28, 11-56 (1978) · Zbl 0397.46065
[3] Araki, H., Elliott, A.: On the Definition ofC *-algebras. Publ. Res. Inst. Math. Sci. Kyoto Univ.9, 93-112 (1972) · Zbl 0272.46033
[4] Arveson, W.: An Invitation toC *-algebra. Graduate Texts in Math.39. Berlin-Heidelberg-New York: Springer 1976
[5] Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete80. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0271.46039
[6] Braun, H., Koecher, M.: Jordan-Algebren. Die Grundlehren der Mathematischen Wissenschaften128. Berlin-Heidelberg-New York: Springer 1965
[7] Braun, R.B., Kaup, W., Upmeier, H.: A holomorphic Characterization of JordanC *-Algebras. Math. Z.161, 277-290 (1978) · Zbl 0385.32002
[8] Braun, R.B.: A Gelfand-Neumark Theorem forC *-alternative Algebras. Habilitationsschrift, T?bingen 1981
[9] Braun, R.B.: Structure and Representations of NoncommutativeC *-Jordan Algebras. Manuscripta Math.41, 139-171 (1983) · Zbl 0512.46055
[10] Gelfand, I., Neumark, M.: On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S.12, 197-213 (1943) · Zbl 0060.27006
[11] Horvath, J.: Topological Vector Spaces and Distributions. London: Addison Wesley 1966 · Zbl 0143.15101
[12] Jacobson, N.: Composition algebras and their automorphisms. Rend. Circ. Math. Palermo (2)7, 55-80 (1958) · Zbl 0083.02702
[13] Jacobson, N.: Structure and Representations of Jordan Algebras. Amer. Math. Soc. Colloq. Publ.39. Providence, Rhode Island: Amer. Math. Soc. 1968 · Zbl 0218.17010
[14] Jacobson, N.: Structure of Rings. Amer. Math. Soc. Colloq. Publ.37. Providence, Rhode Island: Amer. Math. Soc. 1956
[15] Kaup, W., Upmeier, H.: Jordan Algebras and Symmetric Siegel Domains in Banach Spaces. Math. Z.157, 179-200 (1977) · Zbl 0357.32018
[16] Kleinfeld, E.: Simple alternative rings. Ann. of Math.58, 544-547 (1953) · Zbl 0051.02503
[17] McCrimmon, K.: Norms and Noncommutative Jordan Algebras. Pacific J. Math.15, 925-956 (1965) · Zbl 0139.25501
[18] McCrimmon, K.: Alternative Algebras. Mimeographed manuscript Univ. of Virginia, Charlottesville 1975
[19] Palmer, T.W.: Characterizations ofC *-algebras. Bull. Amer. Math. Soc.74, 538-540 (1968) · Zbl 0159.18503
[20] Paya, R., Peres, J., Rodriguez, A.: Noncommutative JordanC *-Algebras. Manuscripta Math.37, 87-125 (1982) · Zbl 0483.46049
[21] Rodriguez, A.: A Vidav-Palmer Theorem for JordanC *-Algebras and related Topics. J. London Math. Soc.22, 318-332 (1980) · Zbl 0483.46050
[22] Russo, B., Dye, H.A.: A note on unitary operators inC *-algebras. Duke Math. J.33, 413-416 (1966) · Zbl 0171.11503
[23] Sakai, S.:C *-Algebras andW *-Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete60. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0219.46042
[24] Schaefer, H.H.: Topological Vector Spaces. Graduate Texts in Math.3. Berlin-Heidelberg-New York: Springer 1971
[25] Schafer, R.D.: An Introduction to Nonassociative Algebras. New York: Academic Press 1966 · Zbl 0145.25601
[26] Sherman, S.: On Segal’s Postulates. Ann. of Math.64, 593-601 (1956) · Zbl 0075.21802
[27] Sinclair, A.M.: The Norm of a Hermitian Element in a Banach Algebra. Proc. Amer. Math. Soc.28, 446-450 (1971) · Zbl 0242.46035
[28] Slater, M.: Ideals in semiprime alternative rings. J. Algebra8, 60-76 (1968) · Zbl 0155.07102
[29] Slater, M.: Prime alternative rings I, II. J. Algebra15, 229-251 (1970) · Zbl 0193.34304
[30] Thedy, A.: Mutationen und polarisierte Fundamentalformel. Math. Ann.177, 235-246 (1968) · Zbl 0174.32203
[31] Vidav, I.: Eine metrische Kennzeichnung der selbstadjungierten Operatoren. Math. Z.66, 121-128 (1956) · Zbl 0071.11503
[32] Wright, J.D.M.: JordanC *-Algebras. Michigan Math. J.24, 291-302 (1977) · Zbl 0384.46040
[33] Youngson, M.A.: A Vidav Theorem for Banach Jordan Algebras. Math. Proc. Cambridge Philos. Soc.84, 263-272 (1978) · Zbl 0392.46038
[34] Zorn, M.: Theorie der alternativen Ringe. Abh. Math. Sem. Univ. Hamburg8, 123-147 (1930) · JFM 56.0140.01
[35] Zorn, M.: The Automorphisms of Cayley’s Nonassociative Algebra. Proc. Nat. Acad. Sci. U.S.A.21, 355-358 (1935) · Zbl 0011.38903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.