×

Specializations of one-parameter families of polynomials. (English) Zbl 1160.12004

Summary: Let \(K\) be a number field, and suppose \(\lambda(x,t)\in K[x,t]\) is irreducible over \(K(t)\). Using algebraic geometry and group theory, we describe conditions under which the \(K\)-exceptional set of \(\lambda\), i.e. the set of \(\alpha\in K\) for which the specialized polynomial \(\lambda (x,\alpha)\) is \(K\)-reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed \(n\geq 10\), all but finitely many \(K\)-specializations of the degree \(n\) generalized Laguerre polynomial \(L_n^{(t)}(x)\) are \(K\)-irreducible and have Galois group \(S_n\). Second, we study specializations of the modular polynomial \(\Phi_n(x,t)\) (which vanishes on the \(j\)-invariants of pairs of elliptic curves related by a cyclic \(n\)-isogeny), and show that for any \(n\geq 53\), all but finitely many of the \(K\)-specializations of \(\Phi_n(x,t)\) are \(K\)-irreducible and have Galois group containing \(\text{SL}_2 (\mathbb Z/n)/\{\pm I\}\). Third, for a simple branched cover \(\pi: Y\to\mathbb P_K^1\) of degree \(n\geq 7\) and of genus at least 2, all but finitely many \(K\)-specializations are \(K\)-irreducible and have Galois group \(S_n\).

MSC:

12H25 \(p\)-adic differential equations
11C08 Polynomials in number theory
11G15 Complex multiplication and moduli of abelian varieties
11R09 Polynomials (irreducibility, etc.)
14H25 Arithmetic ground fields for curves
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv Numdam EuDML

References:

[1] Artin, E., The gamma function, (1964), Holt, Rinehart and Winston · Zbl 0144.06802
[2] Butler, G.; McKay, J., The transitive subgroups of degree up to eleven, Comm. in Algebra, 11, 863-911, (1983) · Zbl 0518.20003
[3] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of finite groups : maximal subgroups and ordinary characters for simple groups, (1985), Oxford · Zbl 0568.20001
[4] Cox, D., Primes of the form \(x^2+ny^2, (1989),\) Wiley · Zbl 0701.11001
[5] Cummins, C. J.; Pauli, S., Congruence subgroups of \(\operatorname{PSL}(2,\mathbb{Z})\) of genus less than or equal to \(24,\) Exper. Math., 12, 243-255, (2003) · Zbl 1060.11021
[6] Dèbes, P.; Fried, M. D., Integral specialization of families of rational functions, Pacific J. Math., 190, 45-85, (1999) · Zbl 1016.12002
[7] Dennin, Jr., J. B., The genus of subfields of \(K(n),\) Proc. AMS, 51, 282-288, (1975) · Zbl 0313.10022
[8] Dixon, J. D.; Mortimer, B., Permutation groups, (1996), Springer-Verlag · Zbl 0951.20001
[9] Dummit, D., Solving solvable quintics, Math. Comp., 57, 387-401, (1991) · Zbl 0729.12008
[10] Feit, W.\(, \widetilde{A}_5\) and \(\widetilde{A}_7\) are Galois groups over number fields, J. Algebra, 104, 231-260, (1986) · Zbl 0609.12005
[11] Filaseta, M.; Lam, T. Y., On the irreducibility of the generalized Laguerre polynomials, Acta Arith., 105, 177-182, (2002) · Zbl 1010.12001
[12] Filaseta, M.; Trifonov, O., The irreducibility of the Bessel polynomials, J. reine angew. Math., 550, 125-140, (2002) · Zbl 1022.11053
[13] Fried, M., On hilbert’s irreducibility theorem, J. Number Theory, 6, 211-231, (1974) · Zbl 0299.12002
[14] Fulton, W., Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math., 90, 542-575, (1969) · Zbl 0194.21901
[15] Gow, R., Some generalized Laguerre polynomials whose Galois groups are the alternating groups, J. Number Theory, 31, 201-207, (1989) · Zbl 0693.12009
[16] Hajir, F., Algebraic properties of a family of generalized Laguerre polynomials · Zbl 1255.33006
[17] Hajir, F., Some \(\widetilde{A}_n\)-extensions obtained from generalized Laguerre polynomials, J. Number Theory, 50, 206-212, (1995) · Zbl 0829.12004
[18] Hall, M., The theory of groups, (1959), Macmillan · Zbl 0084.02202
[19] Huppert, N.; Blackburn, N., Finite groups III, (1982), Springer-Verlag · Zbl 0514.20002
[20] Knopp, M. I.; Newman, M., Congruence subgroups of positive genus of the modular group, Ill. J. Math., 9, 577-583, (1965) · Zbl 0138.31701
[21] Lang, S., Fundamentals of Diophantine Geometry, (1983), Springer-Verlag · Zbl 0528.14013
[22] Lang, S., Elliptic functions, 2nd ed, (1987), Springer-Verlag · Zbl 0615.14018
[23] Liebeck, M. W.; Saxl, J., Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc., 63, 266-314, (1991) · Zbl 0696.20004
[24] Macbeath, A. M., Extensions of the rationals with Galois group \(\operatorname{PGL}(2, \mathbb{Z}_n),\) Bull. London Math. Soc., 1, 332-338, (1969) · Zbl 0184.07603
[25] Müller, P., Finiteness results for hilbert’s irreducibility theorem, Ann. Inst. Fourier, 52, 983-1015, (2002) · Zbl 1014.12002
[26] Rosen, M., Number theory in function fields, (2002), Springer-Verlag · Zbl 1043.11079
[27] Schur, I., Einige Sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen. II, Sitzungsberichte der Berliner Akademie, 370-391, (1929) · JFM 55.0069.03
[28] Schur, I., Gleichungen ohne affekt, Sitzungsberichte der Berliner Akademie, 443-449, (1930) · JFM 56.0110.02
[29] Schur, I., Affektlose gleichungen in der theorie der laguerreschen und hermiteschen polynome, J. reine angew. Math., 165, 52-58, (1931) · Zbl 0002.11501
[30] Sell, E., On a family of generalized Laguerre polynomials · Zbl 1053.11083
[31] Serre, J.-P., Lectures on the Mordell-Weil theorem, 2nd ed, (1990), Vieweg · Zbl 0676.14005
[32] Serre, J.-P., Topics in Galois theory, (1992), Jones and Bartlett Publ. · Zbl 0746.12001
[33] Silverman, J. H., The arithmetic of elliptic curves, (1986), Springer-Verlag · Zbl 0585.14026
[34] Volklein, H., Groups as Galois groups : an introduction, (1996), Cambridge University Press · Zbl 0868.12003
[35] Wielandt, H., Finite permutation groups, (1964), Academic Press · Zbl 0138.02501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.