zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A classical Diophantine problem and modular forms of weight $3/2$. (English) Zbl 0515.10013
From the introduction: “It is a classical Diophantine problem to determine which integers are the area of some right triangle with rational sides. The main result of this paper is the following. Theorem. Let formal power series in the variable $q$ be given by $g=q\prod_1^\infty (1-q^{8n})(1-q^{16n})$ and, for each positive integer $t$, $\theta_t=\sum_{-\infty}^{\infty} q^{tn^2}$. Set $g\theta_2=\sum_1^{\infty} a(n)q^n$ and $g\theta_4=\sum_1^{\infty} b(n)q^n$. (a) If $a(n)\ne 0$, then $n$ is not the area of any right triangle with rational sides. (b) If $b(n)\ne 0$, then $2n$ is not the area of any right triangle with rational sides.” The integers $D$ contained in the set $\cal C$ of areas of right triangles with rational sides are the classical congruent numbers. From the Pythagorean theorem it follows that $D\in\cal C$ iff the group of rational points $E^D(\Bbb Q)$ on the elliptic curve with Weierstrass model $E^D: y^2=x^3-D^2x$ is infinite. This establishes a link with the famous conjecture of Birch and Swinnerton-Dyer on the equivalence of the nonvanishing of the $L$-series $L_E(s)$ at $s=1$ of the elliptic curve $E$ over $\Bbb Q$ and the finiteness of the group $E(\Bbb Q)$ (see {\it B. J. Birch} and {\it H. P. F. Swinnerton-Dyer} [J. Reine Angew. Math. 218, 79--108 (1965; Zbl 0147.02506)]). Several recent results (cf. {\it J. Coates} and {\it A. Wiles} [Invent. Math. 39, 223--251 (1977; Zbl 0359.14009)] and {\it J.-L. Waldspurger} [J. Math. Pures Appl. (9) 60, 375--484 (1981; Zbl 0431.10015)]) are used by the authors to show that the existence of modular forms of weight $3/2$ (the power series $g\theta_2$ and $g\theta_4$ of the theorem are the $q$-expansions of such modular forms) with nonvanishing $D$th Fourier coefficient implies the finiteness of $E^D(\Bbb Q)$. A table of square-free non-congruent numbers less than 1000 is added and it is conjectured to be complete. Finally, classical criteria for non-congruent numbersare proved with the same technique.

11D25Cubic and quartic diophantine equations
11F37Forms of half-integer weight, etc.
11G40$L$-functions of varieties over global fields
14G10Zeta-functions and related questions
Full Text: DOI EuDML
[1] Alter, R., Curtz, T.B., Kubota, K.K.: Remarks and results on congruent numbers. Proc. Third Southeastern Conf. on Combinatorics, Graph Theory and Computing 1972, pp. 27-35 · Zbl 0259.10010
[2] Alter, R.: The congruent number problem. Amer. Math. Monthly87, 43-45 (1980) · Zbl 0422.10009 · doi:10.2307/2320381
[3] Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves II. J. reine angewandte Math.218, 79-108 (1965) · Zbl 0147.02506 · doi:10.1515/crll.1965.218.79
[4] Birch, B.J., Kuyk, W.: Tables on elliptic curves. In: Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 81-144. Berlin-Heidelberg-New York: Springer 1979
[5] Barrucand, P., Cohn, H.: Note on primes of typex 2+32y 2, class number, and residuacity. J. reine angewandte Math.238, 67-70 (1969) · Zbl 0207.36202 · doi:10.1515/crll.1969.238.67
[6] Brown, E.: The class number of $Q(\sqrt { - p} )$ , forp?1 (mod 8) a prime. Proc. Amer. Math. Soc.31, 381-383 (1972) · Zbl 0207.05401
[7] Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223-251 (1977) · Zbl 0359.14009 · doi:10.1007/BF01402975
[8] Cohen, H., Oesterlé, J.: Dimension des espaces de formes modulaires. In: Modular functions of one variable VI. Lecture Notes in Mathematics, vol. 627, pp. 69-78. Berlin-Heidelberg-New York: Springer 1977
[9] Dickson, L.E.: History of the theory of numbers II. Carnegie Institution, Washington, DC (1920) (reprinted by Chelsea, 1966) · Zbl 47.0888.08
[10] Flicker, Y.: Automorphic forms on covering groups ofGL(2). Invent. Math.57, 119-182 (1980) · Zbl 0431.10014 · doi:10.1007/BF01390092
[11] Jones, B.W.: The arithmetic theory of quadratic forms. Math. Assoc. of Amer., Baltimore, MD 1950 · Zbl 0041.17505
[12] Lagrange, J.: Thèse d’Etat de l’Université de Reims, 1976
[13] Moreno, C.J.: The higher reciprocity laws: an example. J. Number Theory12, 57-70 (1980) · Zbl 0426.10024 · doi:10.1016/0022-314X(80)90073-6
[14] Pizer, A.: On the 2-part of the class number of imaginary quadratic number fields. J. Number Theory8, 184-192 (1976) · Zbl 0329.12003 · doi:10.1016/0022-314X(76)90100-1
[15] Razar, M.: The nonvanishing ofL(1) for certain elliptic curves with no first descents. Amer. J. Math.96, 104-126 (1974) · Zbl 0296.14015 · doi:10.2307/2373583
[16] Razar, M.: A relation between the two-component of the Tate-Shafarevitch group andL(1) for certain elliptic curves. Amer. J. Math.96, 127-144 (1974) · Zbl 0296.14016 · doi:10.2307/2373584
[17] Serre, J-P., Stark, H.M.: Modular forms of weight 1/2. In: Modular functions of one variable VI. Lecture Notes in Mathematics, vol. 627, pp. 27-68. Berlin-Heidelberg-New York: Springer 1977
[18] Shimura, G.: On modular forms of half-integral weight. Ann. of Math.97, 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[19] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton University Press 1971 · Zbl 0221.10029
[20] Smith, H.J.: Collected Mathematical Papers, Volume 1, Oxford (1894). (reprinted by Chelsea, 1965) · Zbl 25.0029.02
[21] Stephens, N.M.: Congruence Properties of Congruent numbers. Bull. London Math. Soc. pp. 182-184 (1975) · Zbl 0304.10011
[22] Tate, J.: The arithmetic of elliptic curves. Invent. Math.23, 179-206 (1974) · Zbl 0296.14018 · doi:10.1007/BF01389745
[23] Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 33-52. Berlin-Heidelberg-New York: Springer 1975 · Zbl 1214.14020
[24] Tate, J.: Number theoretic background. In: Automorphic forms, representations, andL-functions. Proc. Symp. in Pure Math. XXXIII, Part 2, pp. 3-26 (1979)
[25] Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. de Math. pures et appliquées60, (4) 375-484 (1981) · Zbl 0431.10015
[26] Guy, R.K.: Unsolved problems. Amer. Math. Monthly88, 758-761 (1981) · doi:10.2307/2321478