×

zbMATH — the first resource for mathematics

Classification of trivectors of an eight-dimensional real vector space. (English) Zbl 0515.15011

MSC:
15A75 Exterior algebra, Grassmann algebras
15A30 Algebraic systems of matrices
17B05 Structure theory for Lie algebras and superalgebras
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel A., Annals of Math. 75 pp 485– (1962) · Zbl 0107.14804
[2] Bourbaki N., Algèbre, Chapitre III, Algèbre Multilinéare (1958)
[3] Bourbaki N., Groupes et algebres de Lie, Chapitre VII–VIII (1975)
[4] Capdevielle B., Enseignement Math. 18 pp 225– (1972)
[5] Carter R. W., Simple groups of Lie type (1972) · Zbl 0248.20015
[6] Elašvili A. G., Functsional’nyi Analiz i ego Priloženiia 6 pp 51– (1972)
[7] Elašvili A. G., Trudy Tbilisskogo Mat. Instituta 46 pp 109– (1975)
[8] Elkington G. B., J. of Algebra 23 pp 137– (1972) · Zbl 0247.20053
[9] Gurevič G. B., C. R. Acad. Sci. (Paris) 197 pp 384– (1933)
[10] Gurevič G. B., Trudy Sem. Vekt Tenz. Analizu pp 51– (1935)
[11] Gurevič G. B., Dokl. Akad. Nauk SSSR (5) pp 355– (1935)
[12] Gurevič G. B., Foundations of the theory of algebraic invariants (1964)
[13] Humphries J. E., Introduction to Lie algebras and representation theory (1972)
[14] Reichel W., Über die trilinearen alternierenden Formen in 6 and 7 Veränderlichen (1970)
[15] Revoy Ph., Bull. Soc. Math. France 59 pp 141– (1979)
[16] Revoy Ph., Formes trilinéaires alternées en dimension 6 et 7
[17] Schouten J. A., Rend. Circ. Mat 55 pp 137– (1931) · Zbl 0001.35401
[18] Serre J.-P., Corps locaux (1968)
[19] Serre J.-P., Lecture Notes in Mathematics 5 (1964)
[20] Vinberg E. B., Trudy Sem. Vekt. Tenz. Analizu pp 197– (1978)
[21] Vinberg E. B., Trudy Sem. Vekt. Tenz. Analizu, M.G.U. pp 155– (1979)
[22] Vinberg E. B., Dokl. Akad. Nauk SSSR. 221 pp 767– (1975)
[23] Westwick R., Linear and Multilinear Algebra 10 pp 183– (1981) · Zbl 0464.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.