×

zbMATH — the first resource for mathematics

Covariance and geometrical invariance in quantization. (English) Zbl 0515.22015

MSC:
22E70 Applications of Lie groups to the sciences; explicit representations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
22E60 Lie algebras of Lie groups
17B15 Representations of Lie algebras and Lie superalgebras, analytic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0003-4916(78)90224-5 · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[2] DOI: 10.1007/BF02565761 · Zbl 0351.53029 · doi:10.1007/BF02565761
[3] Neroslavski O. M., C. R. Acad. Sci. Paris, Série I 292 pp 71– (1981)
[4] DOI: 10.1007/BF00399743 · doi:10.1007/BF00399743
[5] Cahen M., C. R. Acad. Sci. Paris, Série A 291 pp 543– (1980)
[6] DOI: 10.1016/0034-4877(79)90054-5 · Zbl 0418.58011 · doi:10.1016/0034-4877(79)90054-5
[7] Lichnerowicz A., C. R. Acad. Sc. Paris, Série A 289 pp 349– (1979)
[8] Arnal D., C. R. Acad. Sci. Paris Série A 291 pp 327– (1980)
[9] Lichnerowicz A., C. R. Acad. Sci. Paris Série A 287 pp 1029– (1979)
[10] Palais R. S., Memoirs Am. Math. Soc. 22 (1957)
[11] DOI: 10.1090/S0002-9947-1975-0410775-3 · doi:10.1090/S0002-9947-1975-0410775-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.