Lacroix, J. Singularité du spectre de l’opérateur de Schrödinger aléatoire dans un ruban ou un demi-ruban. (French) Zbl 0515.60067 Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A 38, 385-399 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents MSC: 60H25 Random operators and equations (aspects of stochastic analysis) 60B15 Probability measures on groups or semigroups, Fourier transforms, factorization Keywords:finite difference Schrödinger operator; random walk with values in the symplectic group Citations:Zbl 0508.39010; Zbl 0429.60099 PDF BibTeX XML Cite \textit{J. Lacroix}, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A 38, 385--399 (1983; Zbl 0515.60067) Full Text: Numdam EuDML OpenURL References: [1] J. Lacroix , Problèmes probabilistes liés à l’étude des opérateurs aux différences aléatoires . Annales de l’Institut Elie Cartan , Nancy , t. 7 , 1983 . Zbl 0495.60068 · Zbl 0495.60068 [2] Y. Yoshioka , On the singularity of the spectral measures of a semi infinite random system . Proc. Japan Acad. , t. 49 , 1973 , p. 665 . Article | MR 341972 | Zbl 0295.47031 · Zbl 0295.47031 [3] Furstenberg , Non commuting random products . Am. Math. Soc. , t. 108 , 1963 , p. 337 . Zbl 0203.19102 · Zbl 0203.19102 [4] Ossedelec , A multiplicative ergodic theorem . Trans. Moscow Math. Soc. , t. 19 , 1968 , p. 197 - 362 . Zbl 0236.93034 · Zbl 0236.93034 [5] Y. Guivarc’h , A. Raugi , Frontière de Furstenberg. Propriétés de contraction et théorèmes de convergence . Séminaire de Probabilités , Rennes , 1981 . · Zbl 0558.60009 [6] Pastur , Spectral properties of disordered systems in the one body approximation . Commun. Math. Phys. , t. 75 , 1980 , p. 179 - 196 . Article | MR 582507 | Zbl 0429.60099 · Zbl 0429.60099 [7] Goldseid , The structure of the Spectrum of the Schrödinger random difference operator . Soviet Math Dokl. , t. 22 , 1980 , n^\circ 3 . Zbl 0508.39010 · Zbl 0508.39010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.