Stummel, F. Perturbation theory for evaluation algorithms of arithmetic expressions. (English) Zbl 0515.65039 Math. Comput. 37, 435-473 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 13 Documents MSC: 65G50 Roundoff error 65F05 Direct numerical methods for linear systems and matrix inversion 65J05 General theory of numerical analysis in abstract spaces Keywords:rounding error analysis; evaluation algorithms; a priori and a posteriori error estimates; condition numbers; linear error equations; error propagation; forward analysis; backward analysis PDF BibTeX XML Cite \textit{F. Stummel}, Math. Comput. 37, 435--473 (1981; Zbl 0515.65039) Full Text: DOI References: [1] I. Babuška, Numerical Stability in Numerical Analysis, Proc. IFIP-Congress 1968, Amsterdam, North-Holland, Amsterdam, 1969, pp. 11-23. [2] Ivo Babuška, Numerical stability in problems of linear algebra, SIAM J. Numer. Anal. 9 (1972), 53 – 77. · Zbl 0248.65026 [3] Ivo Babuška, Milan Práger, and Emil Vitásek, Numerical processes in differential equations, In cooperation with R. Radok. Translated from the Czech by Milada Boruvková, Státní Nakladatelství Technické Literatury, Prague; Interscience Publishers John Wiley & Sons, London-New York-Sydney, 1966. · Zbl 0156.16003 [4] F. L. Bauer, Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme, Z. Angew. Math. Mech. 46 (1966), 409 – 421 (German). · Zbl 0148.39101 [5] F. L. Bauer, Computational graphs and rounding error, SIAM J. Numer. Anal. 11 (1974), 87 – 96. · Zbl 0337.65028 [6] F. L. Bauer et al., Moderne Rechenanlagen, Chap. 3, Teubner, Stuttgart, 1964. [7] W. S. Brown, A realistic model of floating-point computation, Mathematical software, III (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1977) Academic Press, New York, 1977, pp. 343 – 360. Publ. Math. Res. Center, No. 39. · Zbl 0407.68039 [8] Peter Henrici, Elements of numerical analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1964. · Zbl 0149.10901 [9] John Larson and Ahmed Sameh, Efficient calculation of the effects of roundoff errors, ACM Trans. Math. Software 4 (1978), no. 3, 228 – 236. , https://doi.org/10.1145/355791.355794 John Larson, Errata: ”Efficient calculation of the effects of roundoff errors” (ACM Trans. Software 4 (1978), no. 3, 228 – 236) by Larson and A. Sameh, ACM Trans. Math. Software 5 (1979), no. 3, 372. · Zbl 0413.65037 [10] Seppo Linnainmaa, Taylor expansion of the accumulated rounding error, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976), no. 2, 146 – 160. · Zbl 0332.65024 [11] D. D. McCracken & W. S. Dorn, Numerical Methods and Fortran Programming, Wiley, New York, 1964. · Zbl 0139.12403 [12] Webb Miller, Software for roundoff analysis, ACM Trans. Math. Software 1 (1975), 108 – 128. · Zbl 0303.65036 [13] Webb Miller, Computer search for numerical instability, J. Assoc. Comput. Mach. 22 (1975), no. 4, 512 – 521. · Zbl 0345.65022 [14] Webb Miller and David Spooner, Software for roundoff analysis. II, ACM Trans. Math. Software 4 (1978), no. 4, 369 – 387. · Zbl 0399.65025 [15] John R. Rice, A theory of condition, SIAM J. Numer. Anal. 3 (1966), 287 – 310. · Zbl 0143.37101 [16] F. Stummel, Fehleranalyse numerischer Algorithmen, Lecture Notes, Univ. of Frankfurt, 1978. [17] F. Stummel, Rounding errors in numerical solutions of two linear equations in two unknowns, Math. Methods Appl. Sci. 4 (1982), no. 4, 549 – 571. · Zbl 0505.65011 [18] F. Stummel, Rounding error analysis of elementary numerical algorithms, Fundamentals of numerical computation (computer-oriented numerical analysis) (Proc. Conf., Tech. Univ. Berlin, Berlin, 1979) Comput. Suppl., vol. 2, Springer, Vienna, 1980, pp. 169 – 195. · Zbl 0432.65023 [19] F. Stummel, ”Rounding error anlaysis of difference and extrapolation schemes.” (To appear.) [20] Friedrich Stummel, Rounding error in Gaussian elimination of tridiagonal linear systems. Survey of results, Interval mathematics, 1980 (Freiburg, 1980) Academic Press, New York-London, 1980, pp. 223 – 245. · Zbl 0543.65011 [21] F. Stummel, ”Rounding error in Gaussian elimination of tridiagonal linear systems. I,” SIAM J. Numer. Anal. (Submitted.) [22] F. Stummel, ”Rounding error in Gaussian elimination of tridiagonal linear systems. II,” Linear Algebra Appl. (Submitted.) [23] F. Stummel, ”Forward error analysis of Gaussian elimination.” (To appear.) [24] Martti Tienari, On some topological properties of numerical algorithms, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 409 – 433. · Zbl 0246.65018 [25] J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. · Zbl 1041.65502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.