Evans, Robin J.; Cantoni, A.; Ahmed, K. M. Envelope-constrained filters with uncertain input. (English) Zbl 0515.93060 Circuits Syst. Signal Process. 2, 131-154 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 93E11 Filtering in stochastic control theory 93C55 Discrete-time control/observation systems 90C25 Convex programming 49J35 Existence of solutions for minimax problems 49M29 Numerical methods involving duality 90C55 Methods of successive quadratic programming type 93E25 Computational methods in stochastic control (MSC2010) 62M20 Inference from stochastic processes and prediction Keywords:Lagrange multipliers; envelope-constrained filters; uncertain input; signal processing filters; impulse response PDF BibTeX XML Cite \textit{R. J. Evans} et al., Circuits Syst. Signal Process. 2, 131--154 (1983; Zbl 0515.93060) Full Text: DOI OpenURL References: [1] R. Evans, A. Cantoni, and T. Fortmann, ”Envelope-constrained filters: I: Theory and Applications; II: Adaptive Structures, ”IIEE Trans. on Inform Theory, July 1977, pp. 421–444. · Zbl 0355.93032 [2] A. A. Goldstein,Constructive Real Analysis, Harper-Row, New York, 1967. · Zbl 0189.49703 [3] R. T. Rockafellar,Convex Analysis, Princeton University Press, 1970. · Zbl 0193.18401 [4] L. S. Lasdon,Optimization Theory for Large Systems, MacMillan, New York, 1970. · Zbl 0224.90038 [5] C. Cook and M. Bernfeld,Radar Signals, Academic Press, New York, 1967, Ch. II. [6] D. Delong, ”Design of Radar Signals and Receivers Subject to Implementation Errors,”IEEE Trans. Inform Theory, Vol. IT-16, No. 6, November 1970, pp. 707–711. [7] R. J. Evans, ”Design of Robust Sidelobe Suppression Filters,” International Conference Radar-77, London, October 25–28, 1977. [8] R. J. Evans, ”Robust Digital Filter Design,”IEEE Conf. Circuits and Systems, Tokyo, Japan, 1979. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.