×

zbMATH — the first resource for mathematics

A new generic scheme for functional logic programming with constraints. (English) Zbl 1115.68048
Summary: In this paper we propose a new generic scheme CFLP\((\mathcal D)\), intended as a logical and semantic framework for lazy Constraint Functional Logic Programming over a parametrically given constraint domain \((\mathcal D)\). As in the case of the well known CLP\((\mathcal D)\) scheme for Constraint Logic Programming, \((\mathcal D)\) is assumed to provide domain specific data values and constraints. CFLP\((\mathcal D)\) programs are presented as sets of constrained rewrite rules that define the behavior of possibly higher order and/or non-deterministic lazy functions over \((\mathcal D)\). As a main novelty with respect to previous related work, we present a Constraint Rewriting Logic CRWL\((\mathcal D)\) which provides a declarative semantics for CFLP\((\mathcal D)\) programs. This logic relies on a new formalization of constraint domains and program interpretations, which allows a flexible combination of domain specific data values and user defined data constructors, as well as a functional view of constraints.

MSC:
68N17 Logic programming
68N18 Functional programming and lambda calculus
Software:
cc(FD); CFLP; GULP; ML; Oz; SICStus; TOY
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abengózar-Carneros, M., Arenas-Sánchez, P., Caballero-Roldán, R., Gil-Luezas, A., González-Moreno, J.C., Leach-Albert, J., López-Fraguas, F.J., Martí-Oliet, N., Molina-Bravo, J.M., Pimentel-Sánchez, E., Rodríguez-Artalejo, M., Roldán-García, M.M., Ruz-Ortiz, J.J., Sánchez-Hernández, J.: TOY: A Multiparadigm Declarative Language. Version 2.0. Technical Report, Dpto. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, February (2002). System and documentation available at http://toy.sourceforge.net.
[2] Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. In: Proc. ACM Symp. on Principles of Programming Languages (POPL’94), pp. 268–279. ACM Press, Portland (1994) · Zbl 1327.68141
[3] Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 74(4), 776–822 (2000) · Zbl 1327.68141
[4] Aït-Kaci, H., Podelski, A.: A feature constraint system for logic programming with entailment. Theor. Comput. Sci. 122, 263–283 (1994) · Zbl 0801.68023 · doi:10.1016/0304-3975(94)90209-7
[5] Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, Chapter 10, pp. 493–574. Elsevier and The MIT Press (1990) · Zbl 0900.68136
[6] Apt, K.R., Gabbrielli, M.: Declarative interpretations reconsidered. In: Proc. Int. Conf. on Logic Programming (ICLP’94), Santa Margherita Ligure, pp. 74–89. The MIT Press (1994)
[7] Arenas-Sánchez, P., Gil-Luezas, A., López-Fraguas, F.J.: Combining lazy narrowing with disequality constraints. In: Proc. Int. Symp. on Programming Language Implementation and Logic Programming (PLILP’94), pp. 385–399. Springer LNCS 844 (1994)
[8] Arenas-Sánchez, P., López-Fraguas, F.J., Rodríguez-Artalejo, M.: Embedding multiset constraints into a lazy functional logic language. In: Proc. Int. Symp. on Programming Language Implementation and Logic Programming (PLILP’98), held jointly with the 6th Int. Conf. on Algebraic and Logic Programming (ALP’98), pp. 429–444. Pisa, Springer LNCS 1490 (1998)
[9] Arenas-Sánchez, P., López-Fraguas, F.J., Rodríguez-Artalejo, M.: Functional plus logic programming with built-in and symbolic constraints. In: Proc. Int. Conf. on Principles and Practice of Declarative Programming (PPDP’99), pp. 152–169. Paris, Springer LNCS 1702 (1999) · Zbl 0953.68033
[10] Arenas-Sánchez, P., Rodríguez-Artalejo, M.: A semantic framework for functional logic programming with algebraic polymorphic types. In: Proc. Int. Joint Conference on Theory and Practice of Software Development (TAPSOFT’97), pp. 453–464. Springer LNCS 1214 (1997) · Zbl 0944.68016
[11] Arenas-Sánchez, P., Rodríguez-Artalejo, M.: A lazy narrowing calculus for functional logic programming with algebraic polymorphic types. In: Proc. Int. Symp. on Logic Programming (ILPS’97), pp. 53–68. The MIT Press (1997) · Zbl 0944.68016
[12] Arenas-Sánchez, P., Rodríguez-Artalejo, M.: A general framework for lazy functional logic programming with algebraic polymorphic types. Theory Pract. Log. Program. 1(2), 185–245 (2001) · Zbl 1066.68511
[13] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998) · Zbl 0948.68098
[14] Backofen, R.: A complete axiomatization of a theory with feature and arity constraints. J. Log. Program. 24(1&2), 37–71 (1995) · Zbl 0866.68014 · doi:10.1016/0743-1066(95)00033-G
[15] Backofen, R., Smolka, G.: A complete and recursive feature theory. Theor. Comput. Sci. 146, 243–268 (1995) · Zbl 0873.68024 · doi:10.1016/0304-3975(94)00188-O
[16] Bossi, A., Gabbrielli, M., Levi, G., Martelli, M.: The s-Semantics approach: Theory and applications. J. Log. Program. 19&20, 149–197 (1994) · Zbl 0942.68527 · doi:10.1016/0743-1066(94)90026-4
[17] Caballero, R., López-Fraguas, F.J., Rodríguez-Artalejo, M.: Theoretical foundations for the declarative debugging of lazy functional logic programs. In: Proc. of the 5th International Symposium on Functional and Logic Programming (FLOPS’2001), pp. 170–184. Springer LNCS 2024 (2001) · Zbl 0977.68510
[18] Caballero, R., Rodríguez-Artalejo, M.: A declarative debugging system for lazy functional logic programs. Electronic Notes Theor. Comput. Sci. 64, 63 (2002) · Zbl 1268.68064
[19] Caballero R., Rodríguez-Artalejo, M.: DDT: A declarative debugging tool for functional logic languages. In: Proc. of the 7th International Symposium on Functional and Logic Programming (FLOPS’2004), pp. 70–84. Springer LNCS 2988 (2004) · Zbl 1122.68366
[20] Caballero, R., Rodríguez-Artalejo, M., del Vado-Vírseda, R.: Declarative diagnosis of wrong answers in constraint functional-logic programming. In: Proc. of the Twenty Second Interntational Conference on Logic Programming (ICLP 2006), LNCS vol. 4079, Springer-Verlag (2006) · Zbl 1131.68370
[21] Clark, K.L.: Predicate logic as a computational formalism. Research Report DOC 79/59, Imperial College, Department of Computing, London (1979)
[22] Colmerauer, A.: Prolog and infinite trees. In: Clark, K.L., Tärnlud, S.A. (eds.) Logic Programming, pp. 153–172. Academic Press (1982)
[23] Colmerauer, A.: Equations and inequations on finite and infinite trees. In: Proc. of the 2nd International Conference on Fifth Generation Computer Systems, pp. 85–89 (1984)
[24] Damas, L., Milner, R.: Principal type schemes for functional programs. In: Proc. ACM Symp. on Principles of Programming Languages (POPL’82), pp. 207–212. ACM Press (1982)
[25] Darlington, J., Guo, Y.K.: Constraint functional programming. Technical Report, Imperial College, November (1989)
[26] Darlington, J., Guo, Y.K.: Constraint equational deduction. In: Proc. of 2nd Int. Workshop on Conditional and Typed Rewriting Systems (CTRS’90), pp. 11–14. Springer LNCS 516 (1991)
[27] Darlington, J., Guo, Y.K., Pull, H.: Introducing constraint functional logic programming. PHOENIX Seminar and Workshop on Declarative Programming (DP’91), Springer Workshops in Computing, pp. 20–34, (1992)
[28] Darlington, J., Guo, Y.K., Pull, H.: A new perspective on the integration of functional and logic languages. In: Proc. of the Int. Conf. on Fifth Generation Computer Systems (FGCS’92), pp. 682–693. IOS Press (1992) · Zbl 0864.68014
[29] DeGroot, D., Lindstrom, G. (eds.): Logic Programming: Functions, Relations and Equations. Prentice-Hall, Englewood Cliffs (1986) · Zbl 0588.68005
[30] Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwenm, J. (ed.) Handbook of Theoretical Computer Science, vol. B, Chapter 6, pp. 243–320. Elsevier and The MIT Press (1990) · Zbl 0900.68283
[31] Dershowitz, N., Okada, M.: A rationale for conditional equational programming. Theor. Comput. Sci. 75, 111–138 (1990) · Zbl 0702.68034 · doi:10.1016/0304-3975(90)90064-O
[32] Estévez-Martín, S., del Vado-Vírseda, R.: Designing an efficient computation strategy in FD using definitional trees. In: Proc. of the International Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp. 23-31 (2005)
[33] Falaschi, M., Levi, G., Martelli, M., Palamidessi, C.: Declarative modeling of the operational behavior of logic languages. Theor. Comput. Sci. 69(3), 289–318 (1989) · Zbl 0699.68113 · doi:10.1016/0304-3975(89)90070-4
[34] Falaschi, M., Levi, G., Martelli, M., Palamidessi, C.: A model-theoretic reconstruction of the operational semantics of logic programs. Inf. Comput. 102(1), 86–113 (1993) · Zbl 0788.68088 · doi:10.1006/inco.1993.1015
[35] Fay, M.J.: First-order unification in an equational theory. In: Proc. Workshop on Automated Deduction (CADE’79), pp. 161–177. Academic Press (1979)
[36] Fernández, A.J., Hortalá-González, M.T., Sáenz Pérez, F.: Solving combinatorial problems with a constraint functional logic language. In: Proc. 5th International Symposium on Principles and Practice of Declarative Languages (PADL’2003), pp. 320–338. Springer LNCS 2562 (2003) · Zbl 1026.68774
[37] Fernández, A.J., Hortalá-González, M.T., Sáenz Pérez, F.: TOY(FD): Sketch of operational semantics.In: Proc. 9th International Conference on Principles and Practice of Constraint Programming (CP’03), pp. 827–831. Springer LNCS 2833 (2003)
[38] Fernández, A.J., Hortalá-González, M.T., Sáenz Pérez, F.: TOY(FD): Version 0.8 User Manual, October 27, (2003). System and documentation available at http://toy.sourceforge.net.
[39] Gabbrielli, M., Levi, G.: Modeling answer constraints in constraint logic programs. In: Proc. of the Eigth Int. Conf. on Logic Programming (ICLP’91), pp. 238–252. The MIT Press (1991)
[40] Gabbrielli, M., Dore, G.M., Levi, G.: Observable semantics for constraint logic programs. J. Logic Comput. 5(2), 133–171 (1995) · Zbl 0823.68018 · doi:10.1093/logcom/5.2.133
[41] González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodríguez-Artalejo, M.: A rewriting logic for declarative programming. In: Proc. European Symp. on Programming (ESOP’96), pp. 156–172. Springer LNCS 1058 (1996)
[42] González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodríguez-Artalejo, M.: An approach to declarative programming based on a rewriting logic. J. Logic Program. 40(1), 47–87 (1999) · Zbl 0942.68060 · doi:10.1016/S0743-1066(98)10029-8
[43] González-Moreno, J.C., Hortalá-González, M.T., Rodríguez-Artalejo, M.: A higher order rewriting logic for functional logic programming. In: Proc. Int. Conf. on Logic Programming, pp. 153–167. The MIT Press (1997)
[44] González-Moreno, J.C., Hortalá-González, M.T., Rodríguez-Artalejo, M.: Polymorphic types in functional logic programming. FLOPS’99 special issue of the Journal of Functional and Logic Programming (2001). http://danae.uni-muenster.de/lehre/kuchen/JFLP.
[45] Gunter, C.A., Scott, D.: Semantic domains. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, Chapter 6, pp. 633–674. Elsevier and The MIT Press (1990) · Zbl 0900.68301
[46] Hanus, M.: The integration of functions into logic programming: from theory to practice. J. Logic Program. 19&20, 583–628 (1994) · Zbl 0942.68526 · doi:10.1016/0743-1066(94)90034-5
[47] Hanus M.: A unified computation model for functional and logic programming. In: Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97), pp. 80–93. ACM Press (1997)
[48] Hanus, M.: Curry: an Integrated Functional Logic Language, Version 0.8.2, March 28 (2006). http://www-i2.informatik.uni-kiel.de/\(\sim\)curry/.
[49] Henz, M., Smolka, G., Würtz, J.: Object-oriented concurrent constraint programming in Oz. In: Saraswat, V., Hentenryck, P.V., (eds.) Principles and Practice of Constraint Programming, Chapter 2, pp. 27–48. The MIT Press (1995)
[50] Hullot, J.M.: Canonical forms and unification. In: Proc. Conf. on Automated Deduction (CADE’80), pp. 318–334. Springer LNCS 87 (1980) · Zbl 0441.68108
[51] Hussmann, H.: Nichtdeterministische Algebraische Spezifikationen. Ph. D. Thesis, University of Passau (1988)
[52] Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent term rewriting. J. Logic Program. 12, 237–255 (1992) · Zbl 0763.68050 · doi:10.1016/0743-1066(92)90026-Y
[53] Hussmann, H.: Non-determinism in Algebraic Specifications and Algebraic Programs. Birkhäuser Verlag (1993) · Zbl 0783.68008
[54] Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proc. ACM Symp. on Principles of Programming Languages (POPL’87), pp. 111–119. ACM Press (1987)
[55] Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Logic Program. 19&20, 503–581 (1994) · Zbl 00639141 · doi:10.1016/0743-1066(94)90033-7
[56] Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint logic programs. J. Logic Program. 37(1–3), 1–46 (1998) · Zbl 0920.68068 · doi:10.1016/S0743-1066(98)10002-X
[57] Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and system. ACM Trans. Program. Lang. Syst. 14(3), 339–395 (1992) · doi:10.1145/129393.129398
[58] Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)
[59] Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 2–116. Oxford University Press (1992)
[60] Kuchen, H., López-Fraguas, F.J., Moreno-Navarro, J.J., Rodríguez-Artalejo, M.: Implementing a lazy functional logic language with disequality constraints. In: Proc. Joint Int. Conf. and Symposium on Logic Programming (JICSLP’92), pp. 207–221. The MIT Press (1992)
[61] Lankford, D.S.: Canonical inference. Technical Report ATP-32, Department of Mathematics and Computer Science, University of Texas at Austin (1975)
[62] Lloyd, J.W.: Foundations of Logic Programming. 2nd edn. Springer Verlag (1987) · Zbl 0668.68004
[63] Loogen, R., López-Fraguas, F.J., Rodríguez-Artalejo, M.: A demand driven computation strategy for lazy narrowing. In: Proc. Int. Symp. on Programming Language Implementation and Logic Programming (PLILP’93), pp. 184–200. Springer LNCS 714 (1993) · Zbl 0791.68021
[64] López-Fraguas, F.J.: A general scheme for constraint functional logic programming. In: Proc. Int. Conf. on Algebraic and Logic Programming (ALP’92), pp. 213–227. Springer LNCS 632 (1992)
[65] López-Fraguas, F.J.: Programación Funcional y Lógica con Restricciones. Ph.D. Thesis, Univ. Complutense Madrid (1994)
[66] López-Fraguas, F.J., Rodríguez-Artalejo, M., del Vado Vírseda, R.: Constraint functional logic programming revisited. In: Proc. of the 5th International Workshop on Rewriting Logic and its Applications (WRLA’2004), Electronic Notes in Theoretical Computer Science, vol. 117, pp. 5–50 (2005) · Zbl 1272.68078
[67] López-Fraguas, F.J., Rodríguez-Artalejo, M., del Vado Vírseda, R.: A lazy narrowing calculus for declarative constraint programming. In: Proc. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming (PPDP’04), pp. 43–54 . ACM Press (2004)
[68] López-Fraguas, F.J., Sánchez-Hernández, J.: Disequalities may help to narrow. In: Proc. APPIA-GULP-PRODE’99, pp. 89–104 (1999)
[69] López-Fraguas, F.J., Sánchez-Hernández, J.: TOY: A multiparadigm declarative system. In: Proc. RTA’99, pp. 244–247. Springer LNCS 1631 (1999)
[70] López-Fraguas, F.J., Sánchez-Hernández, J.: Failure and equality in functional logic programming. Electronic Notes in Theor. Comput. Sci. 86(3), 21 (2003) · Zbl 1270.68061
[71] López-Fraguas, F.J., Sánchez-Hernández, J.: A proof theoretic approach to failure in functional logic programming. Theory Pract. Logic Program. 4(1), 41–74 (2004) · Zbl 1085.68021 · doi:10.1017/S1471068403001728
[72] Maher, M.J.: Complete axiomatization of the algebras of finite, rational and infinite trees. In: Proc. of the Third Annual Symposium of Logic in Computer Science (LICS’88), pp. 348–357. IEEE Computer Society Press (1988)
[73] Mandel, L.: Constrained Lambda Calculus. Aachen Verlag Shaker (1995) · Zbl 0864.68062
[74] Marin, M.: Functional Logic Programming with Distributed Constraint Solving. Ph. D. Thesis, Johannes Kepler Universität Linz (2000)
[75] Marin, M., Ida, T., Schreiner, W.: CFLP: a mathematica implementation of a distributed constraint solving system. In: Third International Mathematical Symposium (IMS’99), p. 10. Hagenberg, Austria, August 23–25 (1999)
[76] Marin, M., Ida, T., Suzuki, T.: Cooperative constraint functional logic programming. In: International Symposium on Principles of Software Evolution (IPSE’2000), pp. 223–230, November 1–2 (2000)
[77] Marriott, K., Stuckey, P.J.: Programming with Constraints, An Introduction. The MIT Press (1998) · Zbl 0935.68098
[78] Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor. Comput. Sci. 285(2), 121–154 (2002) · Zbl 1027.68613 · doi:10.1016/S0304-3975(01)00357-7
[79] Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96, 73–155 (1992) · Zbl 0758.68043 · doi:10.1016/0304-3975(92)90182-F
[80] Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Algebra Eng. Commun. Comput. 5, 213–253 (1994) · Zbl 0810.68088 · doi:10.1007/BF01190830
[81] Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sciences 17, 348–375 (1978) · Zbl 0388.68003 · doi:10.1016/0022-0000(78)90014-4
[82] Möller, B.: On the algebraic specification of infinite objects - ordered and continuous models of algebraic types. Acta Inform. 22, 537–578 (1985) · Zbl 0563.68030
[83] Mück, A., Streicher, T.: A tiny constrain functional logic language and its continuation semantics. In: Proc. European Symp. on Programming (ESOP’94), pp. 439–453. Springer LNCS 788 (1994)
[84] Palomino Tarjuelo, M.: Comparing meseguer’s rewriting logic with the logic CRWL. Electronic Notes in Theoretical Computer Science 64, 22 (2002) · Zbl 1268.68103
[85] Palomino Tarjuelo, M.: A Comparison between two logical formalism for rewriting. In: Falaschi, M., Maher, M. (eds.) Multiparadigm Languages and Constraint Programming (special issue). To appear in Theory and Practice of Logic Programming · Zbl 1268.68103
[86] Robinson, J.A., Sibert, E.E.: LOGLISP: Motivation, design and implementation. In: Clark, K.L., Tärnlund, S.A (eds.) Logic Programming, pp. 299–313. Academic Press (1982)
[87] Rodríguez-Artalejo, M.: Functional and constraint logic programming. In: Comon, H., Marché, C., Treinen, R. (eds.) Constraints in Computational Logics, Theory and Applications. Revised Lectures of the International Summer School CCL’99, Chapter 5, pp. 202–270. Springer LNCS 2002 (2001) · Zbl 0976.68507
[88] Saraswat, V.: Concurrent constraint programming languages. PhD Thesis, Carnegie Mellon University, 1989. In ACM distinguished dissertation series. The MIT press (1993)
[89] Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Proc. of the 17th Annual Symposium on Principles of Programming Languages (POPL’90), pp. 232–245. ACM Computer Society Press (1990)
[90] Saraswat, V., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: Proc. of the 18th Annual Symposium on Principles of Programming Languages (POPL’91), pp. 333–352. ACM Computer Society Press (1991)
[91] Scott, D.S.: Domains for denotational semantics. In: Proc. ICALP’82, pp. 577–613. Springer LNCS 140 (1982) · Zbl 0495.68025
[92] SICStus Prolog user’s manual, release 3.11.0, October 2003. Swedish Institute of Computer Science, Sweden. System available at http://www.sics.se/isl/sicstus.
[93] Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commutativity and associativity. J. ACM 21(4), 622–642 (1974) · Zbl 0296.68092 · doi:10.1145/321850.321859
[94] Smolka, G., Treinen, R.: Records for logic programming. J. Logic Program. 18, 229–258 (1994) · Zbl 0803.68021 · doi:10.1016/0743-1066(94)90044-2
[95] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955) · Zbl 0064.26004
[96] Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Deransart, P., Hermenegildo, M., Maiuszynski, J. (eds.) Analysis and Visualization Tools for Constraint Programming, Chapter 5, pp. 151–174. Springer LNCS 1870 (2000)
[97] del Vado Vírseda, R.: A demand-driven narrowing calculus with overlapping definitional trees. In: Proc. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming (PPDP’03), pp. 213–227. ACM Press (2003) · Zbl 1147.68430
[98] del Vado Vírseda, R.: Declarative constraint programming with definitional trees. In: Proc. 5th International Workshop on Frontiers of Combining Systems (FroCoS’05), pp. 184–199. Springer LNAI 3717 (2005) · Zbl 1171.68405
[99] Van Hentenryck, P.: Constraint Satisfaction in Logic P”rogramming. Logic Programming Series, The MIT Press (1989)
[100] Van Hentenryck, P.: Constraint logic programming. Knowl. Eng. Rev. 6(3), 151–194 (1991) · Zbl 0789.68021 · doi:10.1017/S0269888900005798
[101] Van Hentenryck, P., Simonis, H., Dincbas, M.: Constraint Satisfaction Using Constraint Logic Programming. Artif. Intell. 58, 113–159 (1994) · Zbl 0782.68028 · doi:10.1016/0004-3702(92)90006-J
[102] Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and evaluation of the constraint language cc(FD). J. Logic Program. 37, 139–164 (1998) · Zbl 0920.68026 · doi:10.1016/S0743-1066(98)10006-7
[103] Van Roy, P., Brand, P., Duchier, D., Haridi, S., Henz, M., Schulte, C.: Logic programming in the context of multiparadigm programming: the Oz experience. Theory Pract. Logic Program. 3(6), 717–763 (2003) · Zbl 1090.68017
[104] Winskel, G.: On powerdomains and modality. Theor. Comput. Sci. 36, 127–137 (1985) · Zbl 0579.68018 · doi:10.1016/0304-3975(85)90037-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.