# zbMATH — the first resource for mathematics

The generalized-Euler-constant function $$\gamma (z)$$ and a generalization of Somos’s quadratic recurrence constant. (English) Zbl 1113.11017
The aim of present paper is to study the generalized-Euler-constant function $$\gamma(z)$$, defined for $$| z| \leq 1$$ by $$\gamma(z)=\sum_{n=1}^{\infty}z^{n-1}(\frac{1}{n}-\log\frac{n+1}{n})$$ and extended analytically to $$\mathbb{C}-[1,\infty)$$ by the integral representation $$\gamma(z)=\int_0^1 \int_0^1\frac{1-x}{(1-xyz)(-\log xy)}\,dx\,dy$$. This function has some very important constants in heart; $$\gamma(1)=\gamma=0.577\cdots$$ is the “Euler’s constant”, $$\gamma(-1)=\log\frac{4}{\pi}$$ is the “alternating Euler constant”, $$\gamma(\frac{1}{2})=2\log\frac{2}{\sigma}$$ with $\sigma=\sqrt{1\sqrt{2\sqrt{3\cdots}}}=\prod_{n=1}^{\infty}n^{1/2^n}= 1.661\cdots$ is one of “Somos’s quadratic recurrence constant” [N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (published electronically), Sequence A112302 (2003; Zbl 1044.11108)].
The authors give various relations between this function and some well known special functions such as the Riemann zeta-function $$\zeta(s)=\sum_{n=1}^{\infty}n^{-s}$$ and the polylogarithm function $$\text{Li}_k(z)=\sum_{n=1}^{\infty}z^n n^{-k}$$, which lead to some interesting formulas and expansions for the above mentioned constants. They define $\sigma_t=\root t\of {1\root t\of 2{\root t\of 3\cdots}}=\prod_{n=1}^{\infty}n^{1/t^n}$ for $$t>1$$ as a generalization of Somos’s quadratic recurrence constant, and they prove $$\gamma(\frac{1}{t})=t\log\frac{t}{(t-1)\sigma_t^{t-1}}$$. They calculate $$\gamma(z)$$ and $$\gamma'(z)$$ at roots of unity, which end in evaluating several related series and infinite products. Calculation of $$\gamma'(z)$$ is based on the Kinkelin-Bendersky hyperfactorial $$K$$ function, the Weierstrass products for the gamma and Barnes $$G$$ functions, and Jonquiere’s relation for the polylogarithm. These methods allow them to evaluate some double integrals, and especially considering the “Glaisher-Kinkelin constant” $$A=\lim_{n\rightarrow\infty}1^12^2\cdots n^n n^{-\frac{n^2+n}{2}-\frac{1}{12}}e^{\frac{n^2}{4}}=1.282\cdots$$, they show that $\gamma'(-1)=\log\frac{2^{11/6}A^6}{\pi^{3/2}e} \quad\text{and}\quad \gamma''(-1)=\log\frac{2^{10/3}A^{24}}{\pi^4e^{13/4}}-\frac{7\zeta(3)}{2\pi^2}.$ The paper contains some delicate computations and methods of analysis.

##### MSC:
 11B99 Sequences and sets 33B99 Elementary classical functions 11Y60 Evaluation of number-theoretic constants
OEIS
Full Text:
##### References:
 [1] () [2] Bendersky, L., Sur la fonction gamma généralisée, Acta math., 61, 263-322, (1933) · JFM 59.0373.02 [3] Borwein, P.; Dykshoorn, W., An interesting infinite product, J. math. anal. appl., 179, 203-207, (1993) · Zbl 0793.40006 [4] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G., Higher transcendental functions, the Bateman manuscript project, vol. 1, (1953), McGraw-Hill New York · Zbl 0052.29502 [5] Finch, S., Mathematical constants, (2003), Cambridge Univ. Press Cambridge · Zbl 1054.00001 [6] Gradshteyn, L.S.; Ryzhik, I.M., Table of integrals, series, and products, () · Zbl 0918.65002 [7] Guillera, J.; Sondow, J., Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent, Ramanujan J., in press. Available at: · Zbl 1216.11075 [8] Herschfeld, A., On infinite radicals, Amer. math. monthly, 42, 419-429, (1935) · JFM 61.0205.02 [9] Jonquière, M.A., Note sur la série $$\sum_{n = 1}^\infty x^n / n^s$$, Bull. soc. math. France, 17, 142-152, (1889) · JFM 21.0246.02 [10] Kinkelin, H., Über eine mit der gammafunktion verwandte transcendente und deren anwendung auf die integralrechnung, J. reine angew. math., 57, 122-138, (1860) [11] Knopp, K., Theory and application of infinite series, (1990), Dover Publications New York · JFM 54.0222.09 [12] Ramanujan, S., Collected papers of srinivasa Ramanujan, () · Zbl 1325.01033 [13] Sloane, N.J.A., The on-line encyclopedia of integer sequences, (2006), Published electronically at: · Zbl 1274.11001 [14] M. Somos, Several constants related to quadratic recurrences, unpublished note, 1999 [15] Sondow, J., Criteria for irrationality of Euler’s constant, Proc. amer. math. soc., 131, 2003, 3335-3344, (1927) · Zbl 1113.11040 [16] Sondow, J., Double integrals for Euler’s constant and $$\ln(4 / \pi)$$ and an analog of Hadjicostas’s formula, Amer. math. monthly, 112, 61-65, (2005) · Zbl 1138.11356 [17] Sondow, J., A faster product for π and a new integral for ln(π/2), Amer. math. monthly, 112, 729-734, (2005) · Zbl 1159.11328 [18] Sondow, J., New vacca-type rational series for Euler’s constant and its “alternating” analog $$\ln(4 / \pi)$$, preprint, 2005. Available at: [19] Spanier, J.; Oldham, K.B., An atlas of functions, (1987), Hemisphere New York · Zbl 0618.65007 [20] Srivastava, H.M.; Choi, J., Series associated with the zeta and related functions, (2001), Kluwer Academic Publishers Dordrecht · Zbl 1014.33001 [21] Weisstein, E.W., Somos’s quadratic recurrence constant, MathWorld—A Wolfram Web Resource. Published electronically at:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.