×

zbMATH — the first resource for mathematics

Torsion radicals of lattice ordered groups. (English) Zbl 0516.06015

MSC:
06F15 Ordered groups
20F60 Ordered groups (group-theoretic aspects)
20E10 Quasivarieties and varieties of groups
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] G. Birkhoff: Lattice theory. Third Edition, Providence 1967. · Zbl 0153.02501
[2] P. Conrad: Lattice ordered groups. Tulane University, 1970. · Zbl 0258.06011
[3] P. Conrad: Torsion radicals of lattice ordered groups. Symposia math. 21 (1977), 480-513. · Zbl 0372.06011
[4] Л. Фукс: Частично упорядоченные алгебраические системы. Москва 1965. · Zbl 1099.01519
[5] P. Holland: Varieties of 1-group are torsion classes. Czech. Math. J. 29 (1979), 11-12. · Zbl 0432.06011
[6] J. Jakubík: Über Verbandsgruppen mit zwei Erzeugenden. Czech. Mat. J. 14 (1964), 444-454. · Zbl 0135.06202
[7] J. Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85 - 98. · Zbl 0259.06015
[8] .J. Jakubík: Products of torsion classes of lattice ordered groups. Czech. Math. J. 25 (1975), 576-585. · Zbl 0333.06007
[9] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia math. 21 (1977), 451-477.
[10] J. Jakubík: Products of radical classes of lattice ordered groups. Acta fac. rer. nat. Univ. Comen. Mathem. 39 (1980), 31-42.
[11] М. Якубикова: О некоторых подгруппаX \(l\)-rpunn. Matem. časop. 12 (1962), 97-107. · Zbl 0271.28006
[12] J. Martinez: Torsion theory for lattice ordered groups. Czech. Math. J. 25 (1975), 284-299. · Zbl 0321.06020
[13] J. Martinez: Torsion theory for lattice ordered groups. Part II: Homogeneous l-groups. Czech. Math. J. 26 (1976), 93-100. · Zbl 0331.06009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.