zbMATH — the first resource for mathematics

Class group rank relations in \(Z_p\)-extensions. (English) Zbl 0516.12012

11R58 Arithmetic theory of algebraic function fields
11R18 Cyclotomic extensions
11R23 Iwasawa theory
11R37 Class field theory
14H30 Coverings of curves, fundamental group
Full Text: DOI EuDML
[1] M. Deuring: Automorphismen und Divisorenklassen der Ordnung L in algebraischen Funktionenkörpern, Math. Ann. 113, 208-215 (1936) · JFM 62.0117.01 · doi:10.1007/BF01571630
[2] H. Hasse: Vorlesungen über Klassenkörpertheorie, Physica-Verlag. Wurzburg, 1967 · Zbl 0148.28005
[3] K. Iwasawa; Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Mathematical Journal, vol. 33; no. 2, June 1981, 263-288 · Zbl 0468.12004 · doi:10.2748/tmj/1178229453
[4] Y. Kida: L-extensions of CM-fields and cyclotomic invariants, Journal of Number Theory 12 (1980), 519-528 · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[5] Y. Kida: Cyclotomic ?p -extensions of J-fields, Journal of Number Theory 14, 340-352 (1982) · Zbl 0493.12015 · doi:10.1016/0022-314X(82)90069-5
[6] M. L. Madan: On a theorem of M. Deuring and I. R. Safarevic, Manuscripta Math. 23, 91-102 (1977) · Zbl 0369.12011 · doi:10.1007/BF01168587
[7] M. L. Madan and Sat Pal: Galois cohomology and a theorem of E. Artin, Number Theory and Algebra, © 1977 Academic Press, Inc.
[8] M. Moriya; Über die Struktur der Divisorenklassen einer zyklischen Erweiterung von Primzahlgrad über einem algebraischen Funktionenkörper, Tôhoku Math. J. 48 (1941), 43-54 · JFM 67.0105.03
[9] I. R- ?afarevi?: On p-extensions, Amer. Math. Soc. Trans. Series II, vol. 4, 59-71 (1954)
[10] W. Sinnott: On p-adic L-functions and the Riemann-Hurwitz genus formula (preprint) · Zbl 0545.12011
[11] E. Weiss: Cohomology of Groups, Academic Press (1969) · Zbl 0192.34204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.