Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure. (English) Zbl 0516.14005


14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)


Zbl 0456.14014
Full Text: DOI EuDML


[1] Cattani, E., Kaplan, A.: The monodromy weight filtration for a several variables degeneration of Hodge structures of weight two. Inventiones Math.52, 131-142 (1979) · Zbl 0408.32005
[2] Cattani, E., Kaplan, A.: On the local monodromy of a variation of Hodge structure. Bull. Amer. Math. Soc.4, 116-118 (1981) · Zbl 0472.14007
[3] Deligne, P.: Théorie de Hodge, II. Publ. Math. I.H.E.S.40, 5-57 (1972) · Zbl 0219.14007
[4] Deligne, P.: La conjecture de Weil, II. Publ. Math. I.H.E.S.52, 137-252 (1980) · Zbl 0456.14014
[5] Griffiths, P.A.: Periods of integrals on algebraic manifolds, I, II. Amer. J. Math.90, 568-626; 805-865 (1968) · Zbl 0169.52303
[6] Griffiths, P.A.: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems. Bull. Amer. Math. Soc.76, 228-296 (1970) · Zbl 0214.19802
[7] Griffiths, P.A., Schmid, W.: Recent developments in Hodge Theory: a discussion of techniques and results. Proceedings of the International Colloquium on Discrete Subgroups of Lie Groups, pp. 31-127, Bombay 1973; Oxford Univ. Press, 1975
[8] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973-1032 (1959) · Zbl 0099.25603
[9] Schmid, B.: Variation of Hodge structure: the singularities of the period mapping. Inventiones Math.22, 211-319 (1973) · Zbl 0278.14003
[10] Serre, J.P.: Cohomologie Galoisienne. Lecture Notes Math. Vol.5, Berlin: Springer 1973 · Zbl 0259.12011
[11] Steenbrink, J.: Limits of Hodge structures. Inventiones Math.31, 229-257 (1976) · Zbl 0312.14007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.