Minimal algebras of infinite representation type with preprojective component. (English) Zbl 0516.16023


16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16P10 Finite rings and finite-dimensional associative algebras
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)


Zbl 0482.16026
Full Text: DOI EuDML


[1] BONGARTZ, K.: unpublished
[2] BONGARTZ, K.: Tilted algebras. Springer Lecture Notes, 903 (1981) 26-38 · Zbl 0478.16025
[3] DLAB, V., RINGEL, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976) · Zbl 0332.16015
[4] GABRIEL, P.: Auslander-Reiten sequences and representation-finite algebras. Springer Lecture Notes, 831 (1980), 1-71 · Zbl 0445.16023
[5] HAPPEL, D., RINGEL, C.M.: Tilted algebras, to appear Trans. Amer. Math. Soc. · Zbl 0503.16024
[6] HAPPEL, D., RINGEL, C.M.: Construction of tilted algebras. Springer Lecture Notes, 903 (1981), 125-144 · Zbl 0503.16025
[7] HARARY, F., PALMER, E.M.: Graphical Enumeration. Academic Press, New York and London 1973 · Zbl 0266.05108
[8] OVSIENKO, S.A.: Integral weakly positive forms. In: Schur matrix problems and quadratic forms. Preprint Kiev (1978), 3-17
[9] RINGEL, C.M.: Representations of K-species and bimodules. Journal of Algebra41 (1976), 269-302 · Zbl 0338.16011
[10] RINGEL, C.M.: The rational invariants of the tame quivers. Inv. Math.58, 217-239 (1980) · Zbl 0433.15009
[11] RINGEL, C.M.: Bricks in hereditary length categories, to appear in Resultate der Mathematik · Zbl 0526.16023
[12] VOSSIECK, D.: Präprojektive Kippmoduln über zahmen Köcheralgebren, Diplomarbeit Universität Bielefeld, 1982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.