×

Discrete characters and Fourier inversion on semisimple real Lie groups. (English) Zbl 0516.22007


MSC:

22E30 Analysis on real and complex Lie groups
22E46 Semisimple Lie groups and their representations
43A80 Analysis on other specific Lie groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dan Barbasch, Fourier inversion for unipotent invariant integrals, Trans. Amer. Math. Soc. 249 (1979), no. 1, 51 – 83. · Zbl 0378.22010
[2] W. Chao, Fourier inversion and the Plancherel formula for semisimple Lie groups of real rank two, Ph. D. Thesis, Univ. of Chicago, Chicago, Ill., 1977.
[3] Harish-Chandra, Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74 – 128. · Zbl 0199.46403
[4] Henryk Hecht, The characters of some representations of Harish-Chandra, Math. Ann. 219 (1976), no. 3, 213 – 226. · Zbl 0301.22009
[5] Rebecca A. Herb, Characters of averaged discrete series on semisimple real Lie groups, Pacific J. Math. 80 (1979), no. 1, 169 – 177. · Zbl 0368.22007
[6] R. A. Herb and P. J. Sally Jr., Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions, J. Funct. Anal. 33 (1979), no. 2, 195 – 210. · Zbl 0417.22011
[7] Takeshi Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. II. General theory for semisimple Lie groups, Japan. J. Math. (N.S.) 2 (1976), no. 1, 27 – 89. Takeshi Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. III. Methods of construction for semisimple Lie groups, Japan. J. Math. (N.S.) 2 (1976), no. 2, 269 – 341. Takeshi Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. IV. Explicit forms of the characters of discrete series representations for \?\?(\?,\?), Japan. J. Math. (N.S.) 3 (1977), no. 1, 1 – 48. · Zbl 0341.22006
[8] Susan Martens, The characters of the holomorphic discrete series, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 9, 3275 – 3276. · Zbl 0308.22013
[9] Hisaichi Midorikawa, On the explicit formulae of characters for discrete series representations, Japan. J. Math. (N.S.) 3 (1977), no. 2, 313 – 368. · Zbl 0378.22014
[10] Paul J. Sally Jr. and Garth Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1 – 26. · Zbl 0305.43007
[11] Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47 – 144. · Zbl 0324.22007
[12] Diana Shelstad, Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 1, 1 – 31. · Zbl 0433.22006
[13] Jorge Vargas, A character formula for the discrete series of a semisimple Lie group, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 465 – 467. · Zbl 0442.22009
[14] G. Warner, Harmonic analysis on semisimple Lie groups, Vols. I, II, Springer-Verlag, Berlin and New York, 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.