Gauss-Manin system and mixed Hodge structure. (English) Zbl 0516.32012


32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
32S05 Local complex singularities
14B07 Deformations of singularities
58A14 Hodge theory in global analysis
32Sxx Complex singularities


Zbl 0278.14003
Full Text: DOI


[1] Brieskorn, E.: Die Monodromie der isolierten Singular itaten von Hyperflachen. Manuscripta Math., 2, 103-161 (1970). · Zbl 0186.26101 · doi:10.1007/BF01155695
[2] Brylinski, J. L.: Modules holonomes a singularites regulieres et filtration de Hodge, I (preprint). · Zbl 0598.14008
[3] Deligne, P.: Equations differentielles a points singuliers reguliers. Lect. Notes in Math., vol. 163, Springer (1970). · Zbl 0244.14004 · doi:10.1007/BFb0061194
[4] Pham, F.: Singularites des systemes differentiels de Gauss-Manin. Progress in Math., 2, Birkhauser (1979). · Zbl 0524.32015
[5] Saito, M.: On the exponents and the geometric genus of an isolated hypersurface singularity (to appear in Proceedings of the Symposia in pure Math., 40, A.M.S.). · Zbl 0545.14031
[6] Scherk, J.: A note on two local Hodge filtrations (to appear). · Zbl 0533.14003
[7] Scherk, J., and Steenbrink, J.: On the mixed Hodge structure on the coho-mology of the Milnor fiber (preprint). · Zbl 0618.14002 · doi:10.1007/BF01456138
[8] Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent, math., 22, 211-319 (1973). · Zbl 0278.14003 · doi:10.1007/BF01389674
[9] Steenbrink, J. H. M.: Mixed Hodge structure on the vanishing cohomology. Proceedings of the Nordic Summer School, Oslo, pp. 525-563 (1976). · Zbl 0373.14007
[10] Varchenko, A.: Asymptotics of holomorphic forms define mixed Hodge structure. Dokl. Akad. Nauk. SSSR, 255(5), 1035-1038 (1980). · Zbl 0516.14007
[11] Varchenko, A.: Asymptotic mixed Hodge structure on vanishing cohomology. Izv. Akad. Nauk. SSSR, Ser. Math., 45(3), 540-591 (1981). · Zbl 0476.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.