Gromov, M. Volume and bounded cohomology. (English) Zbl 0516.53046 Publ. Math., Inst. Hautes Étud. Sci. 56, 5-99 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 43 ReviewsCited in 291 Documents MathOverflow Questions: When does the tangent bundle of a manifold admit a flat connection? MSC: 53C20 Global Riemannian geometry, including pinching 57R99 Differential topology Keywords:simplicial volume; minimal volume; simplicial norm; fundamental class; closed surfaces; complete Riemannian manifold; bounded cohomology; Betti number; fundamental group Citations:Zbl 0373.53018; Zbl 0469.53038; Zbl 0196.251; Zbl 0335.57017 PDF BibTeX XML Cite \textit{M. Gromov}, Publ. Math., Inst. Hautes Étud. Sci. 56, 5--99 (1982; Zbl 0516.53046) Full Text: Numdam EuDML